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ABSTRACT

Steady-state and transient models are reviewed for predicting flux decline for
crossflow microfiltration under conditions in which both external cake buildup
and internal membrane fouling are contributing factors. Experimental work is
not covered in the scope of this review, although reference is made to a few
recent studies which have compared experimental measurements with theory.
The steady-state cake thickness and permeate flux are governed by the concen-
tration polarization layer adjacent to the cake of rejected particles which forms
on the membrane surface. Depending on the characteristic particle size and the
tangential shear rate, Brownian diffusion, shear-induced diffusion, or inertial lift
is considered to be the dominant mechanism for particle back-transport in the
polarization layer. For typical shear rates, Brownian diffusion is important for
submicron particles, inertial lift is important for particles larger than approxi-
mately ten microns, and shear—induced diffusion is dominant for intermediate-
sized particles. For short times, it is shown that the transient flux decline due
to cake buildup is closely approximated by deadend batch filtration theory, in-
dependent of the tangential shear rate. For long times, however, the steady or
quasi-steady flux increases with shear rate, because the tangential flow sweeps

particles toward the filter exit and reduces cake buildup.
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1 INTRODUCTION

When pressure—driven flow through a membrane or other filter medium is used to
separate particles approximately 0.1-10 pm in size from fluids, then the process
is called microfiltration. This size range encompasses a wide variety of natural
and industrial particles, including biological cells, clays, paint pigmenis and
polymer latexes. These particles are generally larger than the solutes which are
separated by reverse osmosis and ultrafiltration. In consequence, the osmotic
pressure for microfiltration is negligible, and the transmembrane pressure drop
which drives the microfiltration process is relatively small (less than 50 psi,
or 3.4 x 10° g/cm~s?, typically). Also, the membrane pore size and permeate
flux are typically larger for microfiltration than for ultrafiltration and reverse

OSmMosis.

During microfiltration, the imposed pressure drop causes the suspending
fluid and small solute species to pass through the membrane or other filter
medium and be collected as permeate. The particles are retained by the filter
medium and collected as concentrated retentate. The mechanism by which the
particles are retained depends on the type of filter medium and the nature of
its interactions with the particles being filtered. When a membrane having
pores that are smaller than the particles is used to concentrate or clarify a
liquid or gas stream, then the sieving mechanism of surface filtration applies. In
contrast, a depth filtration mechanism is used in high volume applications such
as air filtration in buildings and clean rooms. For the latter, the filter medium
is typically a fibrous or granular material which permits particles to enter and

adhere to the interior of the filter medium.

Microfiltration processes are traditionally carried out in two types of con-
figurations: deadend and crossflow. In deadend filtration, the pressure—driven

suspension flow is perpendicular to the membrane, and the retained particles
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build up with time as a cake layer if a membrane, screen, or other surface filter
medium is used (see Figure la). If a depth filter medium is used, then the re-
tained particles build up in the void spaces. In either case, the particle buildup
results in an increased resistance to filtration and causes the permeate flux rate
(defined as the volume of permeate formed per unit time per unit membrane
area) to decline if the pressure drop is held constant. As a result, the deadend
filtration process must be stopped periodically in order to remove the particles
or to replace the filter medium, or else the cake must be continuously discharged,
such as is done using a knife blade in rotary drum filtration.

During the past two decades, the crossflow configuration has been increas-
ingly used as an attractive alternative to the deadend configuration. For cross-
flow microfiltration, a membrane is employed as the filter medium, and the
sieving mechanism of surface filtration is dominant. The filter operation is sim-
ilar to that of ultrafiltration and reverse osmosis in that the bulk suspension
is made to flow tangential to the surface of the membrane. Although this can
be accomplished on a small scale using a batch stir—cell, the common mode
of operation is to pump the suspension to be filtered through narrow tubes or
channels having microporous membrane walls. The imposed transmembrane
pressure drop causes a crossflow of permeate through the membrane to occur.
As shown in Figure 1b, the permeate flow carries particles to the membrane
surface, where they are rejected and made to form a thin cake layer which is
analogous to the gel layer in ultrafiltration. Unlike deadend filtration, this cake
layer does not build up indefinitely. Instead, the high shear exerted by the sus-
pension flowing tangential to the membrane surface sweeps the particles toward
the filter exit so that the cake layer remains relatively thin. This allows rela-
tively high fluxes to be maintained over prolonged time periods. Theoretical
research in the past decade has focused on various mechanisms by which the
tangential shear prevents particle deposition on the membrane or cake, leading
to models for predicting the permeate flux.

Previous reviews of theory and experiment for crossflow microfiltration have

been presented by several authors*”. In the present paper, recent models which
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FIGURE 1

Schematics of (a) deadend and (b) crossflow microfiltration.

predict the transient and steady-state permeate flux during crossflow membrane
microfiltration are reviewed and compared. The focus is on Brownian diffusion,
shear-induced diffusion, and inertial lift. These back-transport mechanisms
have received the most attention in the past decade, although alternative mech-
anisms involving the interaction of individual particles with the cake surface
are also being investigated. In Section 2, expressions are given for the steady
flux under conditions where very thin fouling layers provide the controlling re-
sistance to filtration. Section 3 examines the situation where thick cake layers
with relatively low resistances form adjacent to the membranes, and steady-
state models are described which consider the resistance to filtration offered by
both the cake layers and the membranes. These concepts are extended in Sec-
tion 4 to describe the dynamics of flux decline with time due to cake buildup

and membrane fouling. Concluding remarks are presented in Section 5.

2 STEADY-STATE MODELS FOR
THIN FOULING LAYERS

When the particles being filtered are very small or highly compressible, then a

thin fouling layer will quickly form (within a few minutes, or less) within the
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interior of the membrane or on its surface. This fouling layer will impart a
substantial resistance to filtration, so that the permeate flux quickly reaches a
steady or quasi-steady value that is significantly lower than the initial clean
membrane flux. The rate at which particles are carried to the membrane sur-
face with the permeate flow is then balanced by back transport of particles away
from the membrane surface, and by the convection of these particles toward the
filter exit by the suspension flow tangential to the membrane. The back trans-
port mechanisms of Brownian diffusion, shear—induced diffusion, and inertial lift
are reviewed and compared in the following subsections. Models involving the
interaction of individual particles with the cake or membrane surface are not

discussed in detail in this review.

2.1 Brownian Diffusion

It was originally thought that the analogy with ultrafiltration of macromolecules
would allow the traditional concentration polarization model (often referred
to as “film theory”) to predict the steady-state microfiltration flux. In this
model, the flux of particles carried toward the membrane by the permeate flow
at steady state is balanced by Brownian diffusion and convection away from the
membrane, as described by a mass-transfer coefficient?. For laminar flow, this
approach leads to the following expression for the length-averaged permeate
flux:

(J) = 0.81(3,D% /L) In(¢u/db) (1)

where L is the channel length, 4, is the shear rate at the surface of the membrane
resulting from the bulk laminar flow, Dp is the Brownian diffusivity, and ¢, and
¢, are the volume fractions of the rejected species in the bulk suspension and at
the edge of the fouling layer, respectively. For parabolic laminar flows in narrow

tubes or channels, the nominal shear rate at the membrane surface is,

Yo = 4Q/(x H?) cylindrical tubes (2a)
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4o = 3Q/(2WH?) rectangular slits , (2b)

where Q is the volumetric lowrate along the tube or channel, H,, is tube radius or
the channel half-height, and W is the channel width. The Brownian diffusivity
of a spherical particle in a fluid of viscosity p, is given by the Stokes—Einstein
relationship:

Dp = kT/(6xpoa) (3)

where a is the particle radius, T is the absolute temperature, and k = 1.38x10-4

g-cm?/s?-K is the Boltzmann constant.

The Lévéque solution on which Eq. (1) is based is strictly valid only when the
permeate flux becomes vanishingly small. As a result, Eq. (1) represents an exact
solution to the convective diffusion equation only for concentrated suspensions
with low fluxes, although it is commonly applied in practice for ultrafiltration
over broad concentration ranges. Trettin and Doshi® used a similarity solution
to derive numerical and asymptotic results for all concentrations. Their solution
asymptotes to that given by Eq. (1) for concentrated suspensions (d— s < du),
whereas for dilute solutions (¢s < ¢,) they showed that

(J) = 1.31 (Y. D4 ¢w/ S L)/? . (4)

The particle volume fraction, ¢,, in the boundary layer immediately above
the thin fouling layer on the membrane may be determined experimentally.
Alternatively, if the particles are nonadhesive, then ¢, will be equal to the
maximum random packing density of particles in the adjacent cake layer, and it
may then be estimated that ¢,, ~ 0.6 for rigid spherical particles of equal size
and ¢, = 0.8-0.9 for compressible or polydisperse particles.

Unfortunately, predicted fluxes for micron-sized particles using the Brown-
ian diffusivity given by the Stokes-Einstein relationship were found to be one or
more orders—of-magnitude less than those observed in practice!. This finding
follows from the fact that the Brownian diffusivities of micron-sized particles

in water are on the order of 10~ cm?/s, which is much lower than the molec-
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ular diffusivities of macromolecules (yielding lower predicted fluxes), whereas
the membrane and cake permeabilities for microfiltration are higher than the
corresponding permeabilities for ultrafiltration (yielding higher observed fluxes).
Green and Belfort® refer to this discrepancy as the “flux paradox for colloidal

suspensions.”

2.2 Shear—induced Diffusion

As a possible resolution to the flux paradox, Zydney and Colton!® proposed
that the concentration polarization model could be applied to microfiltration
provided that the Brownian diffusivity was replaced by the shear—induced hy-
drodynamic diffusivity first measured by Eckstein et al.'* Shear-induced hy-
drodynamic diffusion of particles occurs because individual particles undergo
random displacements from the streamlines in a shear flow as they interact with
and tumble over other particles. Zydney and Colton!® used an approximate
relationship for the shear-induced diffusion coeflicient measured by Eckstein et
al.l':

Dg =0.03 4,0 . (5)

The shear-induced hydrodynamic diffusivity is proportional to the square of the
particle size multiplied by the shear rate, whereas the Brownian diffusivity is
independent of shear rate and inversely proportional to particle size. As a result,
Brownian diffusion is important for submicron particles and low shear rates,
whereas it is dominated by shear-induced hydrodynamic diffusion in typical
crossflow microfiltration applications involving micron-sized and larger particles.
The shear-induced diffusion coefficient of a micron-sized particle at a modest
shear rate of 4, = 1000 s~! is more than two orders—of-magnitude greater than
its Brownian diffusivity. Note that the steady-state permeate flux given by

Eq. (1) or Eq. (4) becomes proportional to the shear rate when Dy replaces Dp:

(J) = 0.078 4, (a*/L)/*In(¢u, /) bu— O < bu (6)
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(J) =0.126 ;70 (¢wa4/¢bL)1/3 ¢b < ¢w (7)

Davis and Sherwood!? have performed an exact similarity solution for the
convective-diffusion equation governing the steady—state concentration—polariza-
tion boundary layer in crossflow microfiltration of fine particles, under condi-
tions where shear-induced diffusion is the dominant mechanism of particle back-
transport. Their solution includes the concentration-dependent shear-induced
hydrodynamic diffusivity and effective viscosity of sheared suspensions of spher-
ical particles reported by Leighton and co-workers'?®. The result is of similar
functional form as are Egs. (6) and (7), except that the dependence on the par-
ticle volume fraction in the bulk solution differs slightly. For dilute suspensions
(¢s < 0.1) of monodisperse rigid spheres which are nonadhesive and have a

maximum random packing in the boundary layer of ¢, = 0.6, they found that
() = 0.060 4, (a*/$ L)"/® = 0.072 4, (pua’/ S L)'/ | (8)

which is identical to Eq. (7), except that the value of the leading coefficient
is lower in Eq. (8). The difference is primarily because the concentration-
dependent viscosity employed by Davis and Sherwood'? leads to a lower shear—
rate and, hence, decreased shear-induced diffusion in the concentration—polari-

zation boundary layer.

2.8 Inertial Lift

Another proposed resolution of the flux—paradox is that the back-diffusion of
particles away from the membrane is supplemented by a lateral migration of
particles due to inertial lift"*%1°. If the conditions are such that the inertial lift
velocity is sufficient to offset the opposing permeate velocity, then the particles
are not expected to be deposited on the membrane®®. The inertial lift velocity
of spherical particles under laminar flow conditions is of the form

bp,ady?
= ———= 9
'UL' 16 p’o ? ( )
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where p, is the fluid density and b is a dimensionless function of the dimension-
less distance from the wall, In the region near the wall, b is positive, indicating
that the inertial lift velocity carries the particles away from the wall. Its maxi-
mum value near the wall under slow laminar flow conditions (channel Reynolds
numbers small compared to unity) is b = 1.6 for a slit?* and b = 1.3 for a
tube?2, However, most crossflow filiration operations are carried out under fast
laminar flow conditions (channel Reynolds numbers large compared to unity),
for which Drew et al.?? have recently shown that the maximum value is reduced

to b = 0.577.

The inertial lift velocity increases with the cube of the particle size and the
square of the tangential shear rate, and so is expected to be significant for large
particles and high flowrates. It is often less than the permeation velocity for
micron-sized particles in typical crossflow microfiltration systems??. When this
is true, a concentrated layer of deposited particles forms on the membrane sur-
face. If this fouling layer has a high resistance, then it will reduce the permeate
flux until it just balances the inertial lift velocity. For fast laminar flow with

thin fouling layers, the steady-state flux predicted by inertial lift theory is then
J =vp,=0.036 poa®y2/p, (10)

which is independent of the filter length and the concentration of particles in
the bulk suspension. For nondilute suspensions, however, it is expected that
the inertial lift velocity would need to be modified to account for interactions

among particles, although this has not been studied to my knowledge.

2.4 Comparison of Different Back—transport

Mechanisms

The relative magnitudes of the particle back—transport mechanisms of Brownian

diffusion, shear—induced diffusion, and inertial lift depend strongly on the shear-
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rate and particle size, and to a lesser extent on the bulk concentration of particles
in the feed suspension. When the filtration resistance is controlled by a thin
fouling layer, then the steady-state flux is independent of the transmembrane
pressure drop and instead is governed by the back-transport mechanism(s) in
the concentration—polarization boundary layer. In general, inertial lift is the
dominant mechanism for large particles and high shear rates, whereas Brownian
diffusion is dominant for small particles and low shear rates. Shear-induced
diffusion is most important for intermediate particle sizes and shear rates. This
is illustrated quantitatively in Figure 2, where the steady-state flux of water at
20°C versus particle diameter is plotted for a typical shear rate of ¥, = 5,000
s~! for each of the three back-transport mechanisms acting independently. It
is assumed that the feed suspension is dilute, and so the predicted steady—state
fluxes are given by Egs. (4), (8), and (10), respectively, for Brownian diffusion,

shear-induced diffusion, and inertial lift.

From Figure 2, it is seen that Brownian diffusion is only important for par-
ticles smaller than about one-half micron in diameter, whereas inertial lift is
only important for particles larger than about 20 microns in diameter. The
shear-induced diffusion mechanism is dominant for particles with diameters in
the intermediate range of 0.5 gm < 2e¢ < 20 gm, although this range will vary
slightly with the system parameters. The predictions of the shear-induced dif-
fusion model have been verified experimentally for cells and particles in this size

range by Zydney and Colton!®?* and Romero and Davis?®.

3 STEADY-STATE MODELS FOR THICK
CAKE LAYERS

The results of the previous section are restricted to situations in which a fouling

layer which is thin relative to the channel half-height or tube radius provides the
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FIGURE 2

Comparison of the predicted steady-state permeate flux versus particle size
for Brownian diffusion, shear-induced diffusion, and inertial lift back—transport
mechanisms with thin cake layers providing the controlling resistance. The
suspending fluid is water at 20°C, and the nominal shear rate is 4, = 5,000 s7*.

controlling resistance to filtration. This is generally the case for ultrafiltration
of macromolecular solutions and also for microfiltration of suspensions contain-
ing very fine colloidal particles or highly deformable particles. However, many
microfiltration applications involve nearly rigid particles which are micron—sized
or larger. When such particles are rejected by a microporous membrane, they
form a cake layer which may have a relatively high permeability (low resistance)
due to the ability of the permeate fluid to flow through the interstices between
the particles forming the cake. In this case, the cake layer may build up until it

occupies a significant fraction of the tube or channel cross—section. Moreover,
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both the membrane resistance and the cake resistance may then be important

in determining the permeate flux.

The permeate flux may be described by Darcy’s law for the cake and mem-
brane resistances in series:
A
I R a
where p, is the permeate (solvent) viscosity, Ap is the transmembrane pressure
drop employed between the retentate and permeate sides, R,, is the membrane
resistance, and R, is the cake resistance. For flat cakes, the latter is proportional

to the cake thickness or cake mass per unit area:
R. = R.6. = p,(1— )RS, , (12a)

where R, is the specific cake resistance per unit depth, &, is the thickness of the
cake layer, R, is the specific cake resistance per unit mass per area, p, is the
mass density of solid material forming the cake, and ¢, is the void fraction of
the cake. For cylindrical cakes, this must be modified to take into account the

change in cake area with radial position due to curvature:
R.=R.H,In (H,,/(H, - sc)) = p(1 - )R H, In (H,,/(H., - 5c)) , (12b)

where H, is the inside radius of the cylindrical tube in the absence of a cake.
Compressible cakes, such as flocculated clays or cells, exhibit an increase in their
specific resistances with increasing transmembrane pressure. This behavior is

often approximated by a power-law function?®:
R, = a,(Ap)" , (13)

where a, is a constant related primarily to the size and shape of the parti-
cles forming the cake, and s is the compressibility which varies from zero for

incompressible cakes to near unity for highly compressible cakes.
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For incompressible cakes, the specific cake resistance may be estimated from

the Carman-Kozeny equation®”:

R.=K(1—¢)*S%/& (14)

where S, is the solids surface area per unit volume of solids. For uniform spher-
ical particles of radius a, the specific surface area is S, = 3/a, the void fraction
is ¢, = 0.4, and the leading constant is reported by Grace?® to have a value of
K = 5. For a cake composed of micron—sized rigid spheres, the specific cake
resistance is estimated from Eq. (14) to be R. = 10" cm~2. For more complex
suspensions, the specific cake resistance may be measured experimentally. This
is also true of the membrane resistance, since typical membrane morphologies
and pore structures may be quite complex. An experimental technique for de-
termining both resistances for a given system is described in Section 5. Typical
microfiltration membrane resistances are on the order of R,, = 10% — 10'° cm™!.
The dimensionless parameter 8 = H,Rc/ R,, represents the ratio of the resis-
tance of a cake filling the channel to that of the membrane, and it is seen from
the above estimates to be approximately 1-10 for micron-sized rigid particles
in a 1 mm channel. The value of 8 is increased for smaller particles and for
nonrigid particles which form compressible cakes with high resistances.

In order to use Eqgs. (11) and (12) to predict the permeate flux, the thickness
of the cake layer which forms on the membrane surface must be known. In
general, the cake will build with time until the back transport of particles at
its edge just balances the transport of particles to the cake by the permeate
flow. In the following two subsections, models are presented to predict the
steady—state cake thickness and permeate flux. The first is based on the inertial
lift mechanism, which applies for high shear rates and large particles, and the
second is based on the shear-induced diffusion model. A similar derivation may
be made for back—transport by Brownian diffusion. However, particles which
are dominated by Brownian diffusion are usually so small that they form thin
cakes with very large resistances, and then the simplified results of Section 2.1

apply.
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3.1 Inertial Lift

When applied to crossflow microfiltration, the basic premise of the inertial lift
model is that particles are deposited onto the membrane only if the permeate
flux exceeds the inertial lift velocity. In this case, a stagnant cake layer will form
due to the particle deposition. As the cake layer grows, it reduces the permeate
flux due to its resistance. The cake layer also constricts the tube or channel,
thereby leading to increases in the shear rate and the inertial lift velocity. The
cake continues to build up until the lift velocity, vz, and the permeate velocity

at the edge of the cake layer, v,,, become equal.

The permeate velocity for a cake of thickness &, on the membrane is given
by Eqs. (11) and (12), together with a mass balance on permeate as it flows

through flat or curved cake layers:

v, =J= rectangular slits (15a)

= ;= < - cylindrical tubes , (15b)
1-6 (1-8)(1+P8In(1-8)1)
where J, = Ap/poR. is the permeate flux in the absence of a cake layer and
4 = 6./ H, is the dimensionless cake thickness. The inertial lift velocity is given
by Eq. (9) but with the shear rate modified to account for the tube or channel
being constricted due to the cake buildup. If the feed pump delivers a constant
volumetric flowrate, @, then it is seen from Eq. (2) that the shear rate increases
due to a cake buildup of thickness &, by a multiplicative factor of H? /(H, — &)™,
where n = 3 for a tube and n = 2 for a slit. After taking this into account, the

inertial lift velocity is given by

Vi,
= — 16
T =gy (16)

where vy, is the inertial lift velocity given by Eq. (10) for a nonconstricted tube

or channel.
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Equations (15) and (16) may be solved simultaneously for the permeate
flux and cake thickness by setting v, = vy at steady state. In the limit of
B >> 1, a very thin cake layer provides the dominant resistance. The solution
of Section 2.3 is then recovered, with the flux given by Eq. (10) and the cake

thickness inversely proportional to the specific cake resistance:

J=vg, ; §o=1m (J"'—1) B>1, Jn>vie . (I7)
Rc vL,o

In the opposite limit of 8 < 1, the membrane provides the controlling resistance.
The cake layer then serves to increase the inertial lift velocity by constricting the
tube or channel, but it does not affect the permeate flux because of its relatively

low resistance:
J=Jn=Ap/poRm ; 6.=H, (1 - (v;,,.,/.I,,.)l/("“)) B<1 . (18)

The general solution for various values of the relative cake resistance, 3, is
shown in Figure 3 as a plot of J/J, versus J,,/vp,. The steady-state flux
increases with increasing vr, (because of larger inertial lift velocities) and with
decreasing 3 (because thicker cakes form when they have less resistance, and
so the inertial lift velocities increase due to channel constriction). As before,
the steady-state fluxes predicted by the inertial lift model are independent of
the channel length and particle concentration. They are independent of the
transmembrane pressure only in the limit 8 — oo, and become proportional
to the transmembrne pressure in the limit 8 — 0. For finite 8, the cake layer
thickness increases with increasing J/vr ., in order to reduce the permeate flux
and increase the inertial lift velocity until there is no net particle deposition at
the edge of the cake. As J,,/vL, — 00, the cake nearly fills the tube or channel;
for flat channels the permeate flux then asymptotes to J = J,,/(1 + 8), whereas
for cylindrical channels the permeate flux decreases to zero in this limit because

the surface area for filtration approaches zero as the cake nearly fills the tube.
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FIGURE 3

The dimensionless permeate flux profile at steady state for inertial lift as the
dominant back-transport mechanism. The solid lines are for rectangular filters
and the dashed lines are for cylindrical filters. The curves from top to bottom
represent 8 =0, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10, 20, and co.

3.2 Shear—induced Diffusion

The cake thickness at steady state for diffusive back transport increases with dis-
tance from the filter entrance. This thickness is governed by the concentration~
polarization boundary layer adjacent to the cake. At a given position z, the
polarization layer must transport toward the filter exit all of the particles that
are convected into the layer by the permeate flow everywhere upstream of z. The
corresponding increase in the cake thickness with z provides for this requirement

in two ways. First, the increased cake resistance reduces the local permeate flux,
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which allows the concentration polarization layer to expand by diffusion. Sec-
ond, the increased cake thickness reduces the effective cross-sectional area of
the channel so that the suspension velocity (assuming constant flow rate) is in-
creased. These two effects combined lead to an increase with = in the rate at
which rejected particles are transported downstream in the polarization bound-

ary layer.

The analysis presented in this section to predict the steady-state cake thick-
ness and permeate flux profiles using the shear-induced diffusion model follows

29 Modifications are

the integral theory first described by Romero and Davis
made in order to account for the curvature of the cake layer in cylindrical tubes
and for the possibility of partial sticking of the particles at the cake surface. The
steady-state integral mass balance on particles in the concentration-polarization
layer yields?®:
Se+6 2
[ uts- )y = [ vatds (19)

where v,, is the permeate velocity at the edge of the cake layer, § is the boundary
layer thickness, ¢(y) is the particle volume fraction, u(y) is the velocity in the
down—channel (z) direction, and y is the distance measured from the membrane.
The first term represents the convection of particles toward the filter exit by the
crossflow (the bulk concentration is subtracted from the integral in order to
account for the particles present even in the absence of polarization), and the
second term represents the convection of particles into the flowing boundary
layer by the permeate flow. This equation applies to cylindrical geometries, as
well as to rectangular ones, provided that the boundary layer is thin compared to
the tube radius. A simple scaling analysis indicates that the boundary thickness
is of order D/v,,, and this is typically small compared to H, for typical conditions
encountered in practice. However, v,, = J for rectangular channels, whereas

vy == JH,/(H, — §.) for cylindrical tubes from mass balance considerations.

In order to evaluate the first integral in Eq. (19), expressions are needed

for the velocity and concentration profiles in the polarization layer. As de-
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scribed by Romero and Davis?®, the concentration profile may be determined
from a differential mass balance involving convection toward the membrane and
diffusion away from the membrane. The axial velocity profile is then found by
integrating Newton’s viscosity law subject to the assumption of a concentration-
dependent Newtonian viscosity and a constant shear stress in the concentration-
polarization layer. Davis and Sherwood!? have shown that this approach, which
neglects axial convection in the differential mass balance but retains it when the
mass balance is integrated across the polarization boundary layer, is exact in
the dilute limit and accurate to within a few percent for nondilute suspensions.

By substituting the resulting velocity profile into Eq. (19), and then using
the concentration profile to transform the variable of integration from y to ¢,
the following expression relating the permeate velocity to the boundary layer

profiles results:

Mb')‘oH" o= D(¢)d¢' (¢ — h)D(P)dp  [* (e eds'
(H, - 8.)"v2 v2 / s du(¢) ) —/o w(2)de' , (20)

where p(¢) is the concentration-dependent viscosity of the suspension, u, =
u(ds) is the viscosity of the bulk suspension, and D(¢) is the concentration-
dependent shear-induced diffusivity. This expression does not apply in a short
region near the channel entrance, because axial convection there is sufficient to
transport the polarization layer downstream without a stagnant cake forming.
This cake—free region extends for 0 < z < z.,, where the critical distance is
determined from Eq. (20) using v, = J, and §. = 0:
3oD31;

Tidy (21)

Ter =

where the dimensionless function I, which is called the crossflow integral, is

defined by

I = (ps/ o / > /é'" [;Em,d# (¢ %LDWW : (22)
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and i(c) = p/po and D(c) = (H, — 8.)"D/H"D, are dimensionless viscosity
and diffusivity functions, respectively. The crossflow integral is directly pro-
portional to the dimensionless excess particle flux (Q) defined previously!s:

= (us/po)*Q, and the two are equal in the dilute limit. Numerical val-
ues for () are presented by Davis and Leighton'® using viscosity and diffusivity
functions appropriate for suspensions of monodispersed rigid spheres. D, is a
characteristic diffusivity of the particles and is chosen as D, = 4,a? for shear-
induced diffusion. Referring to Eq. (21), an effective diffusivity may be defined
as D, = D,I; /2 This is especially convenient because the effective diffusivity
may be determined experimentally without detailed knowledge of the particle
size and dimensionless viscosity and diffusivity functions. It also does not re-
quire that the wall concentration be known. Earlier crossflow microfiltration
models have set ¢, equal to the particle volume fraction within the cake and
thereby imply that the particles are free to diffuse away from the cake without a
concentration jump. Here, a jump in concentration is allowed as an approximate
model of partially adhesive cakes for which there is an equilibrium between par-
ticles on the stagnant cake surface and those adjacent to it within the flowing

boundary layer.

It proves convenient to make the governing equations dimensionless by defin-
ing & = 2/Ter, B = Vu/Jmy, J = J/Jpm, and 8 = §,/H,. Then combining Eqs
(11), (12), and (20) yields

'vz(l — 6)3" +/ by, d2 2>1 (23)
J=b 1 lit (248)
= Uy = = sn 3 a
1+ 43
(== —— fube . (24b)

1+ Bla(l - §)-
For 2 <1,6=0and J = 1. Equation (23) is solved for §(2) by substituting in
Eq. (24), differentiating the result, and then applying standard numerical rou-
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FIGURE 4

The dimensionless cake thickness versus dimensionless distance from the filter
entrance for shear-induced diffusion as the dominant back transport mechanism.
The solid lines are for rectangular filters and the dashed lines are for cylindrical
filters.

tines for first—order nonlinear ordinary differential equations. The dimensionless
permeate flux, J(), is then determined from Eq. (24).

Numerical solutions to Eqgs. (23) and (24) for various 3 are presented in Fig-
ures 4 and 5. For small 3, the filter cake does not significantly reduce the flux
and so it can become very thick and even pinch off the channel. This has been
observed by Ofsthun® for yeast cakes in narrow hollow fibers. The steady-state
cake thickness is reduced by shear-induced diffusion, because the back~diffusion
of particles increases due to the increased shear rate as the cake builds up and

partially restricts the channel. As @ is increased, the flux is decreased due to the
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FIGURE 5

The dimensionless, length-averaged permeate flux at steady state versus dimen-
sionless filter length for shear—induced diffusion as the dominant back-transport
mechanism. The solid lines are for rectangular filters and the dashed lines are
for cylindrical filters. The curves represent the parameter values 8 =0, 0.1, 0.2,
0.5, 1.0, 2.0, 5.0, 10, 20, and oo, from top to bottom.

increased resistance of the cake layer. The cake thickness also decreases with
increasing 3, because the reduction in flux implies that less channel constric-
tion is required to achieve a steady-state balance of the deposition of particles
into the boundary layer with the convection of these particles toward the filter
exit. Good quantitative agreement with these predictions has been observed by
Romero and Davis?® for suspensions of latex spheres.

The cake buildup is less for a tube than for a two-dimensional rectangular

channel, because of the greater reduction in cross-sectional area for suspension

flow in a tube. However, the steady-state flux is less for a tube than for a
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rectangular channel, because of the reduction of surface area for filtration in a
tube. The minimum flux for a finite value of B in a tube is J = 0, whereas in a
rectangular channel it is J = J,,/(1 + ), corresponding to the tube or channel
becoming nearly filled with suspension. For shear~induced diffusion, this occurs
only in the limit /2., — oo. In contrast, a tube with only Brownian back-

diffusion may become completely blocked off in a finite length for finite 8.

Analytical solutions to Eqs. (23) and (24) may be obtained in the limiting
cases of membrane-dominated resistance and cake—dominated resistance. In

particular, for # > 1 and membrane-dominated resistance (8 < 1)

. , . -1/6

F=1, =1-4Y it 5:1—((6:e+1)/7) tube , (25)
indicating that the flux remains at its clean membrane value of J = J,,, whereas
the cake layer thickness builds up to fill an appreciable portion of the tube or

channel for z > 2. In contrast, for & > 1 and cake-dominated resistance

(B> 1)
J=@s/2-1/27 | b=p(88/2-1/2)°-1) (26)

indicating that the flux is inversely proportional to the one-third power of the
distance from the channel entrance for z > z, and that the cake layer remains

thin due to its high specific resistance.

The solution for the permeate flux, J(z), may be integrated along the length,
L, of a filter in order to find the length-averaged permeate flux. It is this length—
averaged flux, (J), that is shown in Figure 5. For the dual limit of 8 3> 1 and
L/z. > 1, which implies that the resistance is dominated by a thin cake over
most of the filter length, this yields (J) = (3/2)2/*(2c/L)"/®, or in dimensional

form: s
"YoDzll /

Lés

The function I, depends on ¢, ¢, and the concentration dependencies of

(J) =131 [ (27)

the viscosity and diffusion coefficients. For many suspensions, these quantities
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(except ¢) are not known or easily determined. Fortunately, they only appear
as the single quantity given by Eq. (22). For the special case of constant viscosity
and diffusivity, the integrals may be evaluated analytically:

&b 2 =
I = ¢ — 6 — ¢ In(bw/ ) + ) (1n(¢w/¢b)> forp=D=1 . (28)

Note that I, = ¢,, for dilute suspensions (¢ < ¢w), and so Eq. (4) is recovered
in this limit. For the special case of dilute suspensions of nonadhesive, monodis-
perse rigid spheres, the numerical value'® of I, is 1 x 107*, and Eq. (27) is then
identical to Eq. (8).

4 TRANSIENT MODELS FOR THICK CAKE LAYERS

The previous sections describe models for the steady or quasi-steady permeate
flux in crossflow microfiltration. In practice, flux decline from the initial value
to the steady value is observed over time. Typically, there is a short—term flux
decline, occurring over time scales of minutes or hours, due to cake buildup.
There is also a long—term flux decline, occurring over time scales of hours or
days, due to membrane fouling, membrane compaction, and cake compaction
or consolidation. Gradual flux decline also occurs in batch recycle filters due
to the gradual increase in the bulk concentration. Both short-term and long-
term flux decline may be described by Darcy’s law (Eq. (11)), with the cake
and membrane resistances being time-dependent. The cake resistance increases
as the cake thickness increases, as described by Eq. (12). Moreover, when cake
compaction or consolidation occurs, then the specific cake resistance, Rc(t),
may also increase with time. The membrane resistance, R,,(t), increases with
time due to membrane fouling. Petzny and Quinn®, de Balmann et al.3?, and
Robertson and Zydney3 note that the membrane permeability (the inverse of

the specific resistance) may decrease as a result of adsorbed macromolecules
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decreasing the effective membrane pore radius. Ethier and Kamm?®43® have
modeled this behavior for rate-limited adsorption in cylindrical pores. Fane®
and Aimar et al.® have measured the changes in membrane resistance due to
protein adsorption and observed that it increases from an initial value to a
final value in a decaying exponential fashion. Similar observations were made
by Matsumoto et al.3”, with the increase in membrane resistance attributed
to a pore plugging mechanism. A simple phenomenological expression for this

behavior is
Run(t) = Runo + (Rng — Rimo) (1 - exp(—t/r,..)) : (29)

where R,,, is the initial resistance of the clean membrane, R,y is the final
resistance of the fouled membrane, and 7, is a membrane fouling time con-
stant which depends on the concentration of foulant in the feed suspension for
adsorption-limited fouling and also on the transmembrane pressure or initial
flux for transport-limited fouling. More fundamental expressions for the time
rate of change of the membrane resistance are expected to be developed in the
future as research on membrane fouling due to adsorption, pore plugging®®, sur-

39,40

face deposition®®*?, and other mechanisms proceeds.

In the next subsection, the theory of transient flux decline due to cake
buildup during deadend filtration is reviewed. This is followed by a shear—
induced diffusion model to describe transient flux decline due to the buildup
of the cake layer of rejected particles until the tangential flow of suspension
prevents further cake growth. A key result of this model is that the initial
transient flux decline due to cake growth in crossflow microfiltration is closely
approximated by simple deadend filtration theory. Under conditions for which
inertial lift is the primary mechanism for particle back-transport, a model for
flux decline due to cake growth may be derived by generalizing the development
of Green and Belfort?, the details of which are omitted here.
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4.1 Deadend Filtration Theory for Transient

Flux Decline

The rate of cake growth during deadend filtration using a membrane which
completely rejects the particles forming the cake may be determined with the
aid of a particle mass balance at the edge of the growing cake layer:

(745) p=0% (30)
where ¢, is the solids volume fraction in the suspension being filtered, and ¢.
is the solids volume fraction in the cake, just below its top surface. The left-
hand-side of Eq. (30) represents the flux of particles into the surface of the
cake, and it takes into account that this flux is due to the relative motion of the
downward flow of suspension and the upward growth of the cake. As discussed
by Doshi and Trettin*!, the contribution to this flux due to back-diffusion of
colloidal and fine particles in unstirred cells is negligible. The right-hand-side
of Eq. (30) represents the buildup of particles in the cake. Combining Egs. (11),
(12), and (30) yields a first-order ordinary differential equation for the cake-

layer thickness on a flat filter:

ﬂ _ @,J _ ¢, Ap ) (31)
dt (¢C - ¢') (¢c - ¢1)770(Rm + Rc‘st:)

This equation is subject to the initial condition, §. =0 at ¢t = 0.

Deadend batch filtration is often carried out with a constant imposed pres-
sure drop. In this case, the permeate flux decreases with time due to cake

buildup. Eq. (31) may then be separated and integrated to yield

.82 HAP
6«: c =
Rnbet Re 5 = 5.~ 43ma

In performing the required integration, it is assumed here that R, is constant

t . (32)

(no significant membrane fouling or compaction over time) and that ¢, and &,
are constant (no significant changes in cake compression over time), although
these assumptions may be relaxed. This quadratic equation is then solved for

the cake thickness to yield:
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_Rn 2kpopt |
5.(t) = ) [(1 + = ‘f’b)“oan) -1 (33)
By combining this with Eq. (34), the flux expression is
_ 2R.$Apt v
J(t) =Jn (1 + m) , (34)

where the initial flux is given by J,, = Ap/goR,,. The permeate flux starts at its
initial value for a clean membrane and then decreases linearly with time for short
times due to cake buildup. As the flux declines, the rate of cake buildup also
declines. For long times, the flux is inversely proportional to the square-root of

time.

4.2 Shear-induced Diffusion Model for Transient Flux

Decline

During crossflow microfiltration, particles will deposit on the membrane surface
to form a cake layer, except under extreme conditions (high shear rate, low
transmembrane pressure, low feed concentration) for which the particles are
convected toward the filter exit by the tangential flow of retentate as rapidly as
they are convected toward the membrane surface by the perpendicular flow of
permeate. The permeate flux declines according to Darcy’s law (Egs. (11) and
(12)) as the cake builds up, and the primary role of the high shear provided
by the tangential flow is to arrest the cake buildup. As in the steady-state
case, the cake thickness permeate flux may be related to the properties of the
concentration polarization boundary layer. The differential mass balances for
suspension and particles in the boundary layer are, respectively:

Ou Ov

3ty =" (35)
b o(ud)  Od)_ 0 (p 08
%t o "oy By (D By) ’ (3)

where v is the velocity in the transverse (y) direction. The boundary conditions

at the outer and inner edges of the boundary layer are
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8 _

o= , By 0 aty=6+46 , (37a,b)

% _
Oy

where ¢. = 1 — €. is the mass concentration of solids in the cake. Instead of

u=0,v=—-vy, =0, , —vé+D (¢¢—¢u,)%5tf aty =6, , (37cHo)

solving these equations pointwise, which would be difficult both to perform and
to apply in practice, Eq. (36) may be integrated across the boundary layer,
yielding??:

bc+6 66,: F;) Sets
'Q ‘/6c ' (¢ - ¢b)dy + (¢c - ¢b) W + a -/6‘¢ ¥ u(qS — ¢b)dy = vw¢b . (38)

ot
The first term in Eq. (38) represents particle accumulation in the boundary layer,
the second represents particle accumulation in the cake, the third represents
particle convection in the boundary layer by the tangential low, and the right—
hand-side is the convection of particles into the boundary layer due to the

permeate flow. After steady-state is reached, the first two terms are zero, and

what remains is simply the z—derivative of Eq. (19).

The initial conditions for Egs. (36) and (38) are that ¢ = ¢ and 6, = 0
at t = 0. Once filtration starts, the particle concentration at the edge of the
membrane increases rapidly until it reaches ¢ = ¢,, for all ¢ > =z, (this typically
requires a few seconds). A stagnant cake layer then forms and begins to build up
on the membrane surface, because the convection of particles into the boundary
layer by the permeate flow (the fourth term in Eq. (38)) exceeds the convection
of particles in the boundary layer toward the filter exit by the tangential flow
(the third term in Eq. (38)). The capacity of the thin boundary layer for particle
accumulation (the first term in Eq. (38)) is typically small. The cake continues
to build up until its resistance reduces the permeate flux and its finite thickness
constricts the channel, thereby increasing the tangential convection, by sufficient

amounts so that the last two terms in Eq. (38) become in balance.

As shown by Romero and Davis*?, the variable of integration may be trans-

formed from y to ¢, so that Eq. (38) becomes
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where the double integral I3(¢y, ¢,,) is given by Eq. (22), and the single integral
I1(s, $w) is given by
fw -— D

For constant properties (D = i = 1), the latter integral is simply I); = ¢, —
¢ — ¢ In(du/ds)-

It proves convenient to nondimensionalize Eq. (39) by defining & = z/z.,,
£ = (t — te)/Te, Pw = V/Jmo and § = 6./ H,, where Jmo = Ap/ptoRom, is the
initial flux and t, = D,I;/J2, is the time required for the stagnant cake to
first form and is typically negligible®?. The characteristic time for cake growth,
7., 18 chosen to be the time required for the cake buildup to fill the entire
channel, if the flux remained at its initial value and back-diffusion was negligible:
Te = (6s — $)Ho/(#5Jmo). In dimensionless form, Eq. (39) then becomes

18 1 9 0 1 X
.13;.3_£{-—ﬁw(l—g)ﬂ}+5z+—3—5;{—_ﬁ'§(1—3)3"}_vw : (41)

and Eq. (24) is modified to account for internal membrane fouling:

=t —— shit (42a)
a+ 08
J=(1-8), = 1 e (42b)

a+ Aln(1 — )1

where J = J/Jp, n = 2 for rectangular geometries, n = 3 for cylindrical geome-
tries, @ = R/ Rmo, B = H,,fic/ R,.,, and R, is the initial membrane resistance
at £ = 0. The Péclet number is defined here as Pe = JpmoHo($¢ — )/ D, 11 and
is typically much greater than unity, indicating that particle accumulation in
the thin flowing polarization layer is small relative to particle accumulation in
the stagnant cake layer. Equations (41) and (42) are solved exactly using the
method of characteristics*?, as detailed in the Appendix.



16: 46 30 January 2011

Downl oaded At:

104 DAVIS

The solution strategy outlined in the Appendix may be extended to other
cases, including more general situations where R,, and R, are allowed to de-
pend not only on time but also on position and/or intrinsic parameters such as
concentration and flux. However, the method of characteristics involves compli-
cated numerical solutions which are unlikely to be applied in practice. Instead,
an approximate solution which has its origins in the nature of the character-
istics solution is proposed. In particular, the cake buildup and flux decline in
the developing region are independent of position and of the imposed crossflow,
provided that Pe > 1 (as is typical). The cake buildup is then governed by
deadend filtration theory, which is represented by Eq. (38) with only the middle
term retained on its left-hand-side. If we further consider only the typical case
of slow membrane fouling and cake compaction relative to the initial rate of cake
buildup, then we can set & = 1 and B = constant in this equation. The resulting

solution for rectangular channels and cylindrical tubes are, respectively,

5(t) = ((1 +288)2 - 1) /B slits , (43a)
% - _(_1_—?6)_2 +8 (% _a ;6)2 _a _26)2 In(1 - 3)'1) =1{ tubes . (43b)

Equation (43a) is the dimensionless version of Eq. (33) from deadend filtration
theory. This rectangular solution also applies for cylindrical geometries for short

times, when § < 1.

For the typical condition of a stagnant cake layer forming over most of the
filter length (L/z. > 1), then the developing solution applies over most of the
filter length for short times. The length-averaged, transient permeate flux for
short times is then approximated by substituting Eq. (43) into Eq. (42) with
a=:1:

(Jy =1/ (1+288)" (44)
which is the dimensionless version of Eq. (34) from deadend filtration theory.

The transient flux decline due to rapid cake buildup continues until the devel-

oped region is reached over the entire filter length. After that, a pseudo-steady
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state is reached in which flux decline may continue due to gradual membrane
fouling and cake compaction. This may be predicted by using the steady-state
theory in a quasi-steady fashion, treating J,, & Ap/poRm and 8 = R.H, /Rm
as slowly-varying parameters. A recommended approximate model is even
simpler—use Eq. (44) to describe the entire transient flux decline, with J,,
and B based on R, = Rm,, and then use the solution to Eqgs. (23) and (24)
shown in Figures 4 and 5 (or simply Eq. (27), if @ > 1) to describe the steady-
state flux, with J,, and 8 based on R,, = Rpns. The transient solution is applied
until the time at which the flux reaches its steady value. A comparison of this
approximate model (dashed lines) with the complete solution (solid lines) using
the method of characteristics is shown for a wide range of parameter values in
Figures 6-10. The agreement is sufficiently good for the approximate model to
be used in practice. In particular, Figure 6 shows that the agreement is excel-
lent for rectangular filters when there is no internal membrane fouling (a = 1)
or cake compaction (8 = constant), and when the concentration polarization
boundary layer is very thin (Pe — o0), for all times and for arbitrary values of

the dimensionless cake resistance.

When internal membrane fouling or cake compaction occurs, then there is a
period of rapid flux decline due primarily to cake buildup, followed by a period
of gradual flux decline due to internal membrane fouling or cake compaction,
as shown in Figures 7 and 8. For the typical case of a small characteristic cake
growth time relative to the characteristic membrane fouling time, the rapid flux
decline closely follows that predicted by the approximate, deadend filtration
theory. The subsequent gradual flux decline is not predicted by the approxi-
mate theory, which simply sets the flux equal to its steady-state value for the
membrane and cake with their final resistances. When the gradual flux decline
is severe, this approximation may be improved by applying the steady-state
theory in a quasi-steady fashion, using slowly varying membrane and specific

cake resistances.
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FIGURE 6

The dimensionless length-averaged permeate flux decline for a rectangular filter
(n = 2) having a nonfouling membrane (o = 1) with shear-induced diffusion,
L/zs = 10, Pe — oo, and various dimensionless cake resistances. The solid
lines are from the exact solution of Eq. (41), whereas the dashed lines are from
the approximate solution given by Eq. (43a), together with Eq. (42).

For cylindrical tubes with nonfouling membranes, the predicted flux decline
from the complete theory for Pe — oo closely follows that from the approximate
theory (Eq. (44)) for short times, as demonstrated in Figure 9. For longer times,
however, the flux decline from the complete model for Pe — oo is more rapid
than predicted by the approximate model. This occurs when the cake fills an
appreciable fraction of the tube cross—section, so that the curvature correction
to Darcy’s law becomes important. With this correction, the flux from deadend
filtration theory is given by substituting Eq. (43b) into Eq. (42b). The alt

is the dotted line in Figure 9, and the agreement with the complete theorv is
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FIGURE 7

The dimensionless length-averaged permeate flux decline for a rectangular filter
(n = 2) with shear-induced diffusion, L/z. = 108, 8 = 2, #,n, = 2, Pe — oo, and
various dimensionless final membrane resistances. The solid lines are from the
exact solution of Eq. (41), whereas the dashed lines are from the approximate
solution given by Eq. (43a), together with Eq. (42). Note that the transient
portion of the approximate solution does not depend on the final membrane
resistance.

excellent for Pe — oo up until the time that steady state is reached. Figure 9
also shows how the solution depends on finite values of the Péclet number.
When the Péclet number is not large, then significant particle accumulation
occurs in the flowing boundary layer, and the cake-layer growth and resulting
flux decline occur more slowly. In practice, Pe > 10? for typical parameter
values (J, = 1072 cm/s, H, = 0.1 cm, D, = 1075 em?/s, . = 0.6, ¢ = 0.1,
I; = 0.5), and so this effect is usually small. The good agreement between
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FIGURE 8

The dimensionless length—averaged permeate flux decline for a rectangular filter
(n = 2) having a fouling membrane (ay = 2) with shear-induced diffusion,
L/z, = 10, B = 2, Pe — o0, and various fouling time constants. The solid
lines are from the exact solution of Eq. (41), whereas the dashed lines are from
the approximate solution given by Eq. (43a), together with Eq. (42). Note that
the approximation solution does not depend on the fouling time constant.

the complete and approximate models for Pe = 20 represents a tradeoff of two
factors: the accumulation of particles in the boundary layer rather than the cake
layer, which increases the flux, and the curvature effect in Darcy’s law, which

decreases the flux.

Finally, Figure 10 shows the full and approximate solutions for parameter
values which are typical of suspensions of micron-sized particles in cylindrical
tubes with moderate fouling. The transient flux decline from the complete

theory is in close agreement with the approximate, deadend filtration model
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FIGURE 9

The dimensionless length-averaged permeate flux decline for a cylindrical filter
(n = 3) having a nonfouling membrane (a = 1) with shear-induced diffusion,
L/z, = 10%, B = 2, and various Péclet numbers. The solid lines are from the
exact solution of Eq. (41), whereas the dashed and dotted lines are from the
approximate solution given by Eqs. (43a) and (43b), respectively, together with
Eq. (42). Note that the approximate solution does not depend on the Péclet
number.

both with (dotted line) and without (dashed line) the curvature correction,
until the flux decreases to less than one-half its initial value. In practice, the
dimensionless filter length, L/z.., may span a wide range of values, but it is

typically several orders-of-magnitude larger than unity.

5 CONCLUDING REMARKS

Quasi-steady and transient models for crossflow microfiliration have been devel-

oped for typical conditions where both cake resistance and membrane resistance
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FIGURE 10

The dimensionless length-averaged permeate flux decline for a cylindrical filter
{n = 3) having a fouling membrane (a; = 1.5 and #,, = 2) with shear-induced
diffusion, Pe = 10, 8 = 10, and various dimensionless filter lengths. The solid
lines are from the exact solution of Eq. (41), whereas the dashed and dotted lines
are from the approximate solution given by Eqs. (43a) and (43b), respectively,
together with Eq. (42). Note that the approximate solution does not depend on
the filter length.

contribute to the permeate flux decline. Initially, the rate at which rejected
particles are carried toward the membrane by the permeate flow exceeds the
rate at which the tangential flow is able to carry them downstream, and so a
cake layer builds up on the membrane surface and a concentration polarization
layer forms adjacent to it. The cake layer reduces the permeate flux and con-
stricts the channel so that the tangential shear exerted by the bulk suspension
increases. This continues until a steady or quasi-steady state is reached in which

the rate at which particles are carried into the polarization layer by the permeate
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flow is balanced by the rate at which particles are transported away from the
cake and are convected downstream by the tangential flow. The back-transport
mechanisms considered in this review include Brownian diffusion (submicron
particles and low shear rates), inertial lift (supramicron particles and high shear
rates), or shear-induced diffusion (intermediate-sized particles and moderate
shear rates). In general, cake layers composed of the submicron particles as-
sociated with Brownian motion have very high specific resistances and so they
remain thin relative to the channel half-height or tube radius. This is also true
of highly compressible particles. Under these conditions, the steady or quasi-
steady state is reached in a very short time, and the resulting models for thin

cake layers are considerably more simple than those for thick cake layers.

If the cake layer is partially adhesive, then there will be a concentration jump
at its surface. If the adhesion forces are sufficiently strong, then the particles
will stick upon arriving at the cake surface, and there will be no back-diffusion
of particles away from the membrane. In this case, a nondiffusive mechanism of
particle back-transport is required if cake growth is to be arrested by the shear
action of the tangential flow through the tube or channel. One possibility is
inertial lift, which becomes important at high shear rates and for particles larger
than about ten microns. Another possibility involves particle surface transport,
in which the shear exerted by the tangential flow exerts a torque about a contact
point on a particle resting on the surface of the cake. If this torque is sufficient
to overcome the torques exerted by other contact points, the permeate flow, and
any adhesive forces, then the particle would be swept along the cake surface to
the filter exit. This would give rise to individual particles rolling along, and
pethaps captured by, the surface of the cake. A similar picture would also apply
for conditions where the concentration polarization layer thickness, § ~ D/uv,,
is no larger than the diameter of individual particles. Various models which
consider the interaction and adhesion of individual particles near the membrane
or cake surface have been proposed recently and are able to explain observed

data trends when diffusive mechanisms do not apply*>5,
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The rapid flux decline due to cake buildup is followed by a more gradual
flux decline due to membrane fouling and /or cake consolidation. The complete
shear-induced diffusion model of these effects requires a numerical solution by
the method of characteristics. However, it is shown that a simple yet reason-
able approximation is to describe the rapid flux decline due to cake buildup
by deadend filtration theory—independent of the imposed tangential low—up
until the time at which the predicted steady or quasi-steady flux is reached.
A similar conclusion is expected for other back—transport or surface-transport

mechanisms occurring as a result of the tangential flow.

The models include physical parameters—such as the membrane resistance
{R..), the specific cake resistance (Rc), and the crossflow double integral over
the concentration-dependence of viscosity and diffusivity (I;)—which must be
determined empirically for particular membranes and suspensions employed in
practice. Fortunately, these parameters may be determined from relatively sim-
ple experiments. In particular, the membrane resistance may be found from
the pure solvent flux. When membrane fouling is severe, the time-dependent
membrane resistance may be determined by removing the cake (mechanically or
by backflushing) and then measuring the pure-solvent flux at different filtration

times.

The specific cake resistance may be determined from fitting the initial tran-
sient flux data from a crossflow microfiltration experiment to the deadend fil-
tration theory given by Eq. (34). In particular, the deadend filtration equation
may be rearranged in the form:

2R Apt
(b — do)uoRZ,
where J = Ap/ptoRm is the initial flux. Thus, a plot of J2 /{J)? — 1 is expected

BRI =14 (45)

to vield a straight line through the time origin with a slope proportional to
the specific cake resistance, R.. Since data for the permeate flux generally

require that permeate volume versus time data be numerically differentiated, it



16: 46 30 January 2011

Downl oaded At:

MODELS FOR CROSSFLOW MICROFILTRATION 113

is usually more convenient to use the integrated version of the deadend filtration

equation: X
A _ pRHV | poFn
Vo 2A¢—d)ApA Ap

where V(t) is the permeate volume collected in time ¢ and A is the membrane

(46)

area over which the filiration takes place. Thus, a plot of At/V versus V/A
is expected to yield a straight line with slope proportional to R, and intercept
proportional fo R, (it is still recommended that R,, be determined from pure
solvent flux measurements, since the intercept value is very sensitive to uncer-
tainties in the time origin).

The crossflow double integral may be determined from measuring the steady
or quasi-steady permeate flux for a given set of operating conditions. In particu-
lar, once the length-averaged permeate flux is known, then Figure 5 (or Eq. (27)
for cake—dominated resistance) may be used to match theory and experiment to

determine I; as the only unknown.

Finally, the models described in this review do not explicitly include multiple
mechanisms of particle transport away from the cake layer acting simultaneously.
A possible improvement to the shear-induced diffusion model would be to in-
clude inertial lift by replacing v,, on the righi-hand-side of Eqs. (20) and (39)
with v,, — vz. This possibility warrants further study and testing with suprami-
cron particles and high shear rates, for which inertial lift is most important.
In particular, as the cake layer builds up, the resulting channel constriction
increases the effective shear rate at the cake surface. This, in turn, increases
both shear-induced diffusion and inertial lift, with the effect on the latter being

greater due to the quadratic dependence indicated by Eq. (10).
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APPENDIX

The integral model from Section 4.2 for the transient behavior of crossflow
microfiltration has been solved using the method of characteristics by Romero
and Davis*? for the special case of constant membrane resistance. Here, this
solution is outlined for the more general case, and illustrative results are pre-
sented.

Equations (42) and (43) may be conveniently recast in the following general

form:
9(, a,ﬁ) 5 +h(5 a ﬂ) —f(5 a,B) , (47)

where a and 8 may increase with time due to membrane fouling and cake com-
paction or consolidation, respectively, and may also depend on operating condi-

tions such as concentration and transmembrane pressure.

The functions f, g, and h are given by

1 2+ B8)(8c/0i + 868/ 02)

f=rss (1-§pn
_ 1 (8a/dt +60p/81) it (o
Pe G _dr lit (n=2) ,  (48a)
f= 1

(1 - 8)(a+ Bln(1 — §)-1)

_2(a+ Bln(1 — §)71)(8a/% + In(1 — §)-18B/8%)
(1 - §)3n-2

_ 1 (8a/8i +1n(1 — §)-28B/ %)
Pe (1 —_ S')n—l

tube (n =3) , (48b)
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.1 B n(a + Bb) L
g_1+Pe{(1—$)"+(1_3)n+s} slit (n=2) , (49)

U (n—1)(a+B1n(1-8)1) o
g=1+ Pe {(1—3)" + (1_3)"_2 } tube (n =3) , (49b)

_ 2B(a + B8) + 3n(a + B6)?

(18  (1—épnh

slit (n=2) , (50a)

_ 2B(a +Bla(1 - §)™)
(1— )1

h

(a+BIn(1 — §)"1)*(3n - 2)
(1 - §yan-2

tube (n =3) , (50b)

where a and f are allowed to vary with both time and position for the general

case.

The initial and boundary conditions for Eq. (47) are:

§

0, £<0 for £>0 , (51a)

é

0, <1 for >0 . (51b)

These equations are solved using the method of characteristics. In the developing

region, the characteristic lines are governed by

dé¢/di=hlg , #=%, at £=0 (52)
and the solution along these characteristics is governed by

dbjdi=flg , §=0at i=0 . (53)
In the developed region, these equations are replaced by

dijdé =g/h , i=1i, at 2=1 , (54)

déjdz = flh , =0 at 8=1 . (55)
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The developing and developed regions are separated by the primary character-
istic, having &, = 1 and £, = 0. Once these equations are solved, the solution in
real time and space, 8(:3:, t), is obtained from the solution along the character-
istics, 8(f, &,) or 8(, £,), by using the characteristic lines, #(£, &,) or (2, i,),
to relate real time and space to characteristic time and space in the developing

and developed regions, respectively.

The solution by the method of characteristics is illustrated in Figures 11-16.
For these figures, the exponential decay function given by Eq. (29) to describe
the increase in membrane resistance due to fouling is used. In dimensionless
{form, this yields .
oft) =1+ (ay — 1)(1 — e~y | (56)

where oy = Rpg/Rmo, With Rn; being the final membrane resistance, and
fm = Tm/Te, With 7., being the characteristic membrane fouling time. Also, a
constant value of 3 = 5.0 was used, the Péclet number was set at infinity, and a
cylindrical tube (n = 3) with shear—induced diffusion was analyzed (but without
the correction for curvation in Darcy’s law). A second—order Euler method with
logarithmic spatial steps and linear time steps was used to numerically solve
the nonlinear, first—order ordinary differential equations. The resulting map of
characteristic lines is shown in Figure 11. The dotted curves are the character-
istics determined from Eq. (52) for the developing region, whereas the dashed
curves are the characteristics determined from Eq. (54) for the developed region.
The solid curve is the primary characteristic. Figure 12 shows the dimension-
less cake thickness and permeate flux along the developing characteristics. Note
that the solution along all characteristics collapse onto a single curve, because
the functions f and g required in Eq. (563) depend explicitly on § and £, but not
2. This has the important consequence that cake buildup and flux decline in
the developing region depend on time but not position in the filter. Figure 13
shows the dimensionless cake thickness and permeate flux along the developed

characteristics. In this case, the solution differs along the different characteristic
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FIGURE 11

Characteristic map for a cylindrical tube (n = 3) with shear-induced diffusion,
Pe — 00, 8 =5, ay = 5, and 7. /1, = 1. The solid curve is the primary char-
acteristic, the dotted curves are the developing characteristics, and the dashed
curves are the developed characteristics.
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FIGURE 12

Dimensionless cake thickness (solid line) and permeate flux (dashed line) along
developing characteristics for the conditions of Figure 11.
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FIGURE 13

Dimensionless cake thickness (solid lines) and permeate flux (dashed lines) along
developed characteristics for the conditions of Figure 11.

10 T T T T T T !
© : 4
a 3
2 - 1
ﬁ 0.5 2
=
e | ~ B
Q t=1
A | B
«
o -
| 4
0.0 | : . : ' .
10° 10% 10* 10 10°

distance, X

FIGURE 14

Dimensionless cake thickness versus distance for various times and the conditions
of Figure 11.
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lines, because membrane fouling causes the functions f and h appearing in Eq.
(55) to depend explicitly on .

Using the characteristic solution, Figures 14 and 15 were constructed to show
the solution in real time and space. Note from Figure 14 that the cake thickness
at a given time increases monotonically with distance in the developed region
near the filter entrance, but that it is independent of position in the developing

region further down the channel. Moreover, the cake thickness increases with

time, as expected, in the developing portion of the filter, whereas it actually
decreases with time in the developed portion of the filter. This surprising feature
is shown more clearly in Figure 15, where the cake is seen to build up with time
in the developing region, independent of position, and then to erode with time
in the developed region. The physical explanation for this is that the rate at

which particles are carried into the boundary layer by the permeate flow in the

10 T T T T T 1 T
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0.0 1 ] — % 1 1 L
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FIGURE 15

Dimensionless cake thickness versus time for various distances and the conditions
of Figure 11.
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FIGURE 16

The dimensionless length-averaged permeate versus time for filters of different
lengths and the conditions of Figure 11.

developing region exceeds the ability of the particles to diffuse away from the
cake and be convected downstream by the tangential flow. As a result, the
cake thickness increases with time in the developing region, thereby reducing
the permeate flux and increasing the tangential shear rate, until a balance is
achieved for particle flux toward and away from the cake layer. After this time,
the developed solution applies. However, the permeate flux continues to decline
due to internal membrane fouling. This reduces the rate at which particles
are convected toward the cake by the permeate flow, below the rate at which
they diffuse away from the cake and are convected downstream, and so the cake
erodes. Such erosion has been observed by Ofsthun®® using freeze-substitution
methods for microfiltration of yeast and protein mixtures in hollow fibers. Of
course, for particles which are adhesive, so that cake buildup is irreversible, the
cake thickness will remain constant with time in the developed portion, and the

permeate flux from then on will be given by Eq. (42) with & fixed but with «
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(and B) changing with time due to membrane fouling (and cake compaction).

Finally, the length-averaged permeate flux decline is shown in Figure 16 for

different filter lengths. Note that the initial flux decline is independent of filter

length, except for very short filters.

MR T S s D S S S m T e s

3

NOMENCLATURE

particle radius, pm

dimensionless function in Eq. (9)

diffusion coefficient, cm?/s

Brownian diffusion coefficient, given by Eg. (3), cm?/s
characteristic shear-induced diffusion coefficient, ay,, cm?/s
shear-induced diffusion coefficient, approximated by Eq. (5),
cm?/s

dimensionless diffusion coefficient, (H, — §.)"D/H"D,
dimensionless function defined by Eq. (48)

dimensionless function defined by Eq. (49)

dimensionless function defined by Eq. (50)

channel half-height or tube radius, cm

dimensionless single crossflow integral defined by Eq. (40)
dimensionless double crossflow integral defined by Eq. (22)
permeate flux, cm/s

length-averaged permeate flux, cm/s

permeate flux for membrane resistance only, Ap/p, R, cm/s
dimensionless permeate flux, J/Jn,

Boltzmann's constant, 1.38 x 10~¢ g-cm?/s>—°K
dimensionless constant in Eq. (14)

filter length, cm

parameter with value 2 (rectangular slit) or 3 (cylindrical tube)
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transmembrane pressure drop, g/cm-s?

dimensionless Péclet number, Jpo Ho(pe — @)/ Dol

feed flow rate, cm?®/s

dimensionless excess particle flux defined following Eq. (22)
1

cake resistance, cm™

specific cake resistance per unit height, cm~?

specific cake resistance per unit mass per unit area, cm/g

membrane resistance, cm™!

solids surface area per volume of solids, cm~?!
time, s

time for cake layer to first form, D,I;/J2 , s

dimensionless time, (t — t..)/7.

absolute temperature, °K

axial velocity component, cm/s

transverse velocity component, cm/s

permeate velocity at edge of cake, cm/s

dimensionless permeate velocity, vy/Jmo

inertial lift velocity, defined by Eq. (16), cm/s

inertial lift velocity in absence of cake layer, defined by Eq.
(9), cm/s

width of rectangular filter, cm

axial distance from filter entrance, cm

position where cake first forms, defined by Eq. (21), cm

dimensionless distance, z/z.,

transverse distance from membrane surface, cm

Greek symbols

a

B
)

dimensionless membrane resistance, Ry, /Rumo
dimensionless cake resistance, R.H,/Rm

concentration polarization boundary layer thickness, cm
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leﬂbi

Yo

Subscripts
b

3 = o

Q

cake layer thickness, cm
dimensionless cake layer thickness, §./H,
void fraction

shear rate at membrane surface, given by Eq. (2), 57!

suspension viscosity, g/cm-s

pure fluid viscosity, g/cm-s

dimensionless suspension viscosity, p/p,

particle volume fraction, 1 — ¢

pure fluid density, g/cm?

solid particle density, g/cm?

characteristic time for cake buildup, (¢. — ¢ ) H,/{$Jmo)
characteristic time for membrane fouling, defined by Eq. (29), s

dimensionless membrane fouling time, 7, /7.

bulk suspension

cake layer

final conditions

membrane

initial conditions in absence of cake layer, or pure fluid values

edge of boundary layer, just above cake layer
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