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ABSTRACT 

Steady-state and transient models are reviewed for predicting flux decline for 

crossflow microfiltration under conditions in which both external cake buildup 

and internal membrane fouling are contributing factors. Experimental work is 

not covered in the scope of this review, although reference is made to a few 

recent studies which have compared experimental measurements with theory. 

The steady-state cake thickness and permeate flux are governed by the concen- 

tration polarization layer adjacent to the cake of rejected particles which forms 

on the membrane surface. Depending on the characteristic particle size and the 

tangential shear rate, Brownian diffusion, shear-induced diffusion, or inertial lift 

is considered to be the dominant mechanism for particle back-transport in the 

polarization layer. For typical shear rates, Brownian diffusion is important for 

submicron particles, inertial lift is important for particles larger than approxi- 

mately ten microns, and shear-induced diffusion is dominant for intermediate- 

sized particles. For short times, it is shown that the transient flux decline due 

to cake buildup is closely approximated by deadend batch filtration theory, in- 

dependent of the tangential shear rate. For long times, however, the steady or 

quasi-steady flux increases with shear rate, because the tangential flow sweeps 

particles toward the filter exit and reduces cake buildup. 
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MODELS FOR CROSSFKOW MICROFILTRATION 77 

1 INTRODUCTION 

When pressure-driven flow through a membrane or other filter medium is used to 

separate particles approximately 0.1-10 pm in size from fluids, then the process 

is called microfiltration. This size range encompasses a wide variety of natural 

and industrial particles, including biological cells, clays, paint pigments and 

polymer latexes. These particles are generally larger than the solutes which are 

separated by reverse osmosis and ultrafiltration. In consequence, the osmotic 

pressure for microfiltration is negligible, and the transmembrane pressure drop 

which drives the microfiltration process is relatively small (less than 50 psi, 

or 3.4 x 10' g/cm-s', typically). Also, the membrane pore siee and permeate 

flux are typically larger for microfiltration than for ultrdtration and reverse 

osmosis. 

During microfiltration, the imposed pressure drop causes the suspending 

fluid and small solute species to ~ M S  through the membrane or other filter 

medium and be collected as permeate. The particlea are retained by the filter 

medium and collected as concentrated retentate. The mechanism by which the 

particles are retained depends on the type of filter medium and the nature of 

its interactions with the particles being filtered. When a membrane having 

pores that are smaller than the particles is used to concentrate or clarify a 

liquid or gas stream, then the sieving mechanism of surface filtration applies. In 

contrast, a depth filtration mechanism is used in high volume applications such 

as air filtration in buildings and clean rooms. For the latter, the filter medium 

is typically a fibrous or granular material which permits particles to enter and 

adhere to the interior of the filter medium. 

Microfiltration processes are traditionally carried out in two types of con- 

figurations: deadend and crossflow. In deadend filtration, the pressure4riven 

suspension flow is perpendicular to the membrane, and the retained particles 
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78 DAVIS 

build up with time as a cake layer if a membrane, screen, or other surface filter 

medium is used (see Figure la).  If a depth filter medium is used, then the re- 

tained particles build up in the void spaces. In either case, the particle buildup 

results in an increased resistance to filtration and causes the permeate flux rate 

(defined as the volume of permeate formed per unit time per unit membrane 

area) to decline if the pressure drop is held constant. As a result, the deadend 

filtration process must be stopped periodically in order to remove the particles 

or to replace the filter medium, or else the cake must be continuously discharged, 

such as is done using a knife blade in rotary drum filtration. 

During the past two decades, the crossflow configuration has been increas- 

ingly used as an attractive alternative to the deadend configuration. For cross- 

flow microfiltration, a membrane is employed as the filter medium, and the 

sieving mechanism of surface filtration is dominant. The filter operation is sim- 

ilar to that of ultrafiltration and reverse osmosis in that the bulk suspension 

is made to flow tangential to the surface of the membrane. Although this can 

be accomplished on a small scale using a batch stir-cell, the common mode 

of operation is to pump the suspension to be filtered through narrow tubes or 

channels having microporous membrane walls. The imposed transmembrane 

pressure drop causes a crossflow of permeate through the membrane to occur. 

As shown in Figure lb ,  the permeate flow carries particles to the membrane 

surface, where they are rejected and made to form a thin cake layer which is 

analogous to the gel layer in ultrafiltration. Unlike deadend filtration, this cake 

layer does not build up indefinitely. Instead, the high shear exerted by the sus- 

pension flowing tangential to the membrane surface sweeps the particles toward 

the filter exit so that the cake layer remains relatively thin. This allows rela- 

tively high fluxes to be maintained over prolonged time periods. Theoretical 

research in the past decade has focused on various mechanisms by which the 

tangential shear prevents particle deposition on the membrane or cake, leading 

to models for predicting the permeate flux. 

Previous reviews of theory and experiment for crossflow microfiltration have 

been presented by several authors’-’. In the present paper, recent models which 
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FEE 

PERMEATE 

PERMEATE 

(a) DEADEND FILTRATION (b) CROSSFLOW FILTRATION 

FIGURE 1 

Schematics of (a) deadend and (b) crossflow microfiltration. 

predict the transient and steady-state permeate flux during crossflow membrane 

microfiltration are reviewed and compared. The focus is on Brownian diffusion, 

shear-induced diffusion, and inertial lift. These back-transport mechanisms 

have received the most attention in the past decade, although alternative mech- 

anisms involving the interaction of individual particles with the cake surface 

are also being investigated. In Section 2, expressions are given for the steady 

flux under conditions where very thin fouling layers provide the controlling re- 

sistance to filtration. Section 3 examines the situation where thick cake layers 

with relatively low resistances form adjacent to the membranes, and steady- 

state models are described which consider the resistance to filtration offered by 

both the cake layers and the membranes. These concepts are extended in Sec- 

tion 4 to describe the dynamics of flux decline with time due to cake buildup 

and membrane fouling. Concluding remarks are presented in Section 5. 

2 STEADY-STATE MODELS FOR 

THIN FOULING LAYERS 

When the particles being filtered are very small or highly compressible, then a 

thin fouling layer will quickly form (within a few minutes, or less) within the 
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80 DAVIS 

interior of the membrane or on its surface. This fouling layer will impart a 

substantial resistance to filtration, so that the permeate flux quickly reaches a 

steady or quasi-steady value that is significantly lower than the initial clean 

membrane flux. The rate at which particles are carried to the membrane sur- 

face with the permeate flow is then balanced by back transport of particles away 

from the membrane surface, and by the convection of these particles toward the 

filter exit by the suspension flow tangential to the membrane. The back trans- 

port mechanisms of Brownian diffusion, shear-induced diffusion, and inertial lift 

are reviewed and compared in the following subsections. Models involving the 

interaction of individual particles with the cake or membrane surface are not 

discussed in detail in this review. 

2.1 Brownian Diffusion 

It was originally thought that the analogy with ultrafiltration of macromolecules 

would allow the traditional concentration polarization model (often referred 

to as “film theory”) to predict the steady-state microfiltration flux. In this 

model, the flux of particles carried toward the membrane by the permeate flow 

at steady state is balanced by Brownian diffusion and convection away from the 

membrane, as described by a mass-transfer coefficient4. For laminar flow, this 

approach leads to the following expression for the length-averaged permeate 

flux: 

(J) = 0 . 8 1 ( 7 & 1 / L ) * ’ ~  ln (&/h)  , ( 1 )  

where L is the channel length, +,, is the shear rate at the surface of the membrane 

resulting from the bulk laminar flow, Dg is the Brownian diffusivity, and q5b and 

&, are the volume fractions of the rejected species in the bulk suspension and at 

the edge of the fouling layer, respectively. For parabolic laminar flows in narrow 

tubes or channels, the nominal shear rate at the membrane surface is, 

+o = 4Q/(7rH;) cylindrical tubes , P a )  
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7, = 3Q/(2WH;) rectangular slits , (2b) 

where Q is the volumetricflowrate along the tube or channel, H, is tube radius or 

the channel half-height, and W is the channel width. The Brownian diffusivity 

of a spherical particle in a fluid of viscosity p, is given by the Stokes-Einstein 

relationship: 

DB = kT/(Gw,a) , (3) 

where a is the particle radius, T is the absolute temperature, and k = 1.38~10-'~ 

g-cmz/s2-K is the Boltzmann constant. 

The Mv6que solution on which Eq. (1) is based is strictly valid only when the 

permeate flux becomes vanishingly small. AS a result, Eq. (1) represents an exact 

solution to the convective diffusion equation only for concentrated suspensions 

with low fluxes, although it is commonly applied in practice for ultrafiltration 

over broad concentration ranges. Trettin and Doshi" used a similarity solution 

to derive numerical and asymptotic results for all concentrations. Their solution 

asymptotes to that given by Eq. (1) for concentrated suspensions (&-& << &), 

whereas for dilute solutions (& << #I,,,) they showed that 

The particle volume fraction, &,, in the boundary layer immediately above 

the thin fouling layer on the membrane may be determined experimentally. 

Alternatively, if the particles are nonadhesive, then I#,,, will be equal to the 

maximum random packing density of particles in the adjacent cake layer, and it 

may then be entimated that x 0.6 for rigid spherical particles of equal size 

and &, x 0.8-0.9 for compressible or polydisperse particles. 

Unfortunately, predicted fluxes for micron-sized particles using the Brown- 

ian diffusivity given by the Stokes-Einstein relationship were found to be one or 

more orders-of-magnitude less than those observed in practice'. This finding 

follows from the fact that the Brownian diffusivities of micron-sized particles 

in water are on the order of lo-' cmz/s, which is much lower than the molec- 
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82 DAVIS 

ular diffusivities of macromolecules (yielding lower predicted fluxes) , whereas 

the membrane and cake permeabilities for microfiltration ate higher than the 

corresponding permeabilities for ultrafiltration (yielding higher observed fluxes). 

Green and Belfort’ refer to this discrepancy as the “flux paradox for colloidal 

suspensions.” 

2.2 Shear-induced Diffusion 

As a possible resolution to the flux paradox, Zydney and Coltonlo proposed 

that the concentration polarization model could be applied to microfiltration 

provided that the Brownian diffusivity was replaced by the shear-induced hy- 

drodynamic diffusivity first measured by Eckstein et al.*l Shear-induced hy- 

drodynamic diffusion of particles occurs because individual particles undergo 

random displacements from the streamlines in a shear flow as they interact with 

and tumble over other particles. Zydney and Coltonlo used an approximate 

relationship for the shear-induced diffusion coefficient measured by Eckstein et 

al.1’ : 

Ds = 0.03 ibaa , ( 5 )  

The shear-induced hydrodynamic diffusivity is proportional to the square of the 

particle size multiplied by the shear rate, whereas the Brownian diffusivity is 

independent of shear rate and inversely proportional to particle size. As a result, 

Brownian diffusion is important for submicron particles and low shear rates, 

whereas it is dominated by shear-induced hydrodynamic diffusion in typical 

crossflow microfiltration applications involving micron-sized and larger particles. 

The shear-induced diffusion coefficient of a micron-sized particle at a modest 

shear rate of = 1000 s-* is more than two orders-of-magnitude greater than 

its Brownian diffusivity. Note that the steady-state permeate flux given by 

Eq. (1) or Eq. (4) becomes proportional to the shear rate when Ds replaces De: 

(J) = 0.078 r0 (~~/L)’ /~ ln(&/4b)  
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MODELS FOR CROSSFLOW MICROFTLTRATION 83 

(J) = 0.126 +o (rb,a4/4bL)'/3 4 b  4 w  (7) 

Davis and Sherwood12 have performed an exact similarity solution for the 

convective-diffusion equation governing the steady-st ate concentration-polariza- 

tion boundary layer in crossflow microfiltration of fine particles, under condi- 

tions where shear-induced diffusion is the dominant mechanism of particle back- 

transport. Their solution includes the concentration-dependent shear-induced 

hydrodynamic diffusivity and effective viscosity of sheared suspensions of spher- 

ical particles reported by Leighton and co-workers1"6. The result is of similar 

functional form as are Eqs. (6) and (7), except that the dependence on the par- 

ticle volume fraction in the bulk solution differs slightly. For dilute suspensions 

(db < 0.1) of monodisperse rigid spheres which are nonadhesive and have a 

maximum random packing in the boundary layer of 4,,, x 0.6, they found that 

which is identical to Eq. (7), except that the value of the leading coefficient 

is lower in Eq. (8). The difference is primarily because the concentration- 

dependent viscosity employed by Davis and Sherwood" leads to a lower shear- 

rate and, hence, decreased shear-induced diffusion in the concentration-polari- 

zation boundary layer. 

2.3 Inertial Lift 

Another proposed resolution of the flux-paradox is that the back-diffusion of 

particles away from the membrane is supplemented by a lateral migration of 

particles due to inertial lift'~g~'b'g. If the conditions are such that the inertial lift 

velocity is sufficient to offset the opposing permeate velocity, then the particles 

are not expected to be deposited on the membranea0. The inertial lift velocity 

of spherical particles under laminar flow conditions is of the form 
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84 DAVIS 

where po is the fluid density and b is a dimensionless function of the dimension- 

less distance from the wall. In the region near the wall, b is positive, indicating 

that the inertial lift velocity carries the particles away from the wall. Its maxi- 

mum value near the wall under slow laminar flow conditions (channel Reynolds 

numbers small compared to unity) is b = 1.6 for a slit21 and b = 1.3 for a 

tubpzz. However, most crossflow filtration operations are carried out under fast 

laminar flow conditions (channel Reynolds numbers large compared to unity), 

for which Drew et aLa3 have recently shown that the maximum value is reduced 

to b = 0.577. 

The inertial lift velocity increases with the cube of the particle size and the 

square of the tangential shear rate, and so is expected to be significant for large 

particles and high flowrates. It is often less than the permeation velocity for 

micron-sized particles in typical crossflow microfiltration systemsz4. When this 

is true, a concentrated layer of deposited particles forms on the membrane sur- 

face If this fouling layer has a high resistance, then it will reduce the permeate 

flux until it just balances the inertial lift velocity. For fast laminar flow with 

thin fouling layers, the steady-state flux predicted by inertial lift theory is then 

J = V L , ~  = 0.036 poa3+~/p0 , 

which is independent of the filter length and the concentration of particles in 

the bulk suspension. For nondilute suspensions, however, it is expected that 

the inertial lift velocity would need to be modified to account for interactions 

among particles, although this has not been studied to my knowledge. 

2.4 Comparison of Different Back-transport 

Mechanisms 

The relative magnitudes of the particle back-transport mechanisms of Brownian 

diffusion, shear-induced diffusion, and inertial lift depend strongly on the shear- 
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MODELS FOR CROSSFLOW MICROFILTRATION 85 

rate and particle s ix ,  and to a lesser extent on the bulk concentration of particles 

in the feed suspension. When the filtration resistance is controlled by a thin 

fouling layer, then the steady-state flux is independent of the transmembrane 

pressure drop and instead is governed by the back-transport mechanism(s) in 

the concentration-polarization boundary layer. In general, inertial lift is the 

dominant mechanism for large particles and high shear rates, whereas Brownian 

diffusion is dominant for small particles and low shear rates. Shear-induced 

diffusion is most important for intermediate particle sizes and shear rates. This 

is illustrated quantitatively in Figure 2, where the steady-state flux of water at 

2OoC versus particle diameter is plotted for a typical shear rate of +o = 5,000 

s-l for each of the three back-transport mechanisms acting independently. It 

is assumed that the feed suspension is dilute, and so the predicted steady-state 

fluxes are given by Eqs. (4), (8), and (lo), respectively, for Brownian diffusion, 

shear-induced diffusion, and inertial lift. 

From Figure 2, it is seen that Brownian diffusion is only important for par- 

ticles smaller than about one-half micron in diameter, whereas inertial lift is 

only important for particles larger than about 20 microns in diameter. The 

shear-induced diffusion mechanism is dominant for particles with diameters in 

the intermediate range of 0.5 pm < 2a < 20 pm, although this range will vary 

slightly with the system parameters. The predictions of the shear-induced dif- 

fusion model have been verified experimentally for cells and particles in this size 

range by Zydney and C o l t ~ n ' ~ * ~ ~  and Romero and Davis3'. 

3 STEADY-STATE MODELS FOR THICK 

CAKE LAYERS 

The results of the previous section are restricted to situations in which a fouling 

layer which is thin relative to the channel half-height or tube radius provides the 
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FIGURE 2 

Comparison of the predicted steady-state permeate flux versus particle size 
for Brownian diffusion, shear-induced diffusion, and inertial lift back-transport 
mechanisms with thin cake layers providing the controlling resistance. The 
suspending fluid is water at 20°C, and the nominal shear rate is To = 5,000 s-'. 

controlling resistance to  filtration. This is generally the case for ultrafiltration 

of macromolecular solutions and also for microfiltration of suspensions contain- 

ing very fine colloidal particles or highly deformable particles. However, many 

microfiltration applications involve nearly rigid particles which are micron-sized 

or larger. When such particles are rejected by a microporous membrane, they 

form a cake layer which may have a relatively high permeability (low resistance) 

due to the ability of the permeate fluid to flow through the interstices between 

the particles forming the cake. In this case, the cake layer may build up until it 

occupies a significant fraction of the tube or channel cross-section. Moreover, 
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both the membrane resistance and the cake resistance may then be important 

in determining the permeate flux. 

The permeate flux may be described by Darcy's law for the cake and mem- 

brane resistances in series: 

where po is the permeate (solvent) viscosity, Ap is the transmembrane pressure 

drop employed between the retentate and permeate sides, R, is the membrane 

resistance, and R, is the cake reeistance. For flat cakes, the latter is proportional 

to the cake thickness or cake mass per unit area: 

where & is the specific cake resistance per unit depth, 6, is the thickness of the 

cake layer, R: is the specific cake resistance per unit mass per area, pg is the 

mass density of solid material forming the cake, and E, is the void fraction of 

the cake. For cylindrical cakes, this must be modified to take into account the 

change in cake area with radial position due to curvature: 

where Ho is the inside radius of the cylindrical tube in the absence of a cake. 

Compressible cakes, such as flocculated clays or cells, exhibit an increase in their 

specific resistances with increasing transmembrane pressure. This behavior is 

often approximated by a power-law function"! 

where a, is a constant related primarily to the size and shape of the parti- 

cles forming the cake, and u is the compressibility which varies from zero for 

incompressible cakes to near unity for highly compressible cakes. 
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For incompressible cakes, the specific cake resistance may be estimated from 

the Carman-Kozeny equation": 

Rc = K ( 1 -  €,)zs,2/€: , (14) 

where S, is the solids surface area per unit volume of solids. For uniform spher- 

ical particles of radius a, the specific surface area is S, = 3 / a ,  the void fraction 

is tC = 0.4, and the leading constant is reported by Graceas to have a value of 

K = 5. For a cake composed of micron-sized rigid spheres, the specific cake 

resistance is estimated from Eq. (14) to be R, = 10" ern-'. For more complex 

suspensions, the specific cake resistance may be measured experimentally. This 

is also true of the membrane resistance, since typical membrane morphologies 

and pore structures may be quite complex. An experimental technique for de- 

termining both resistances for a given system is described in Section 5. Typical 

microfiltration membrane resistances are on the order of R, = lo8 - 1O'O cm-'. 

The dimensionless parameter p = H,R,/R,,, represents the ratio of the resis- 

tance of a cake filling the channel to that of the membrane, and it is seen from 

the above estimates to be approximately 1-10 for micron-sized rigid particles 

in a 1 mm channel. The value of @ is increased for smaller particles and for 

nonrigid particles which form compressible cakes with high resistances. 

In order to use Eqs. (11) and (12) to predict the permeate flux, the thickness 

of the cake layer which forms on the membrane surface must be known. In 

general, the cake will build with time until the back transport of particles at 

its edge just balances the transport of particles to the cake by the permeate 

flow. In the following two subsections, models are presented to predict the 

steady-state cake thickness and permeate flux. The first is based on the inertial 

lift mechanism, which applies for high shear rates and large particles, and the 

serond is based on the shear-induced diffusion model. A similar derivation may 

be made for back-transport by Brownian diffusion. However, particles which 

are dominated by Brownian diffusion are usually so small that they form thin 

cakes with very large resistances, and then the simplified results of Section 2.1 

apply. 
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3.1 Inertial Lift 

When applied to crossflow microfiltration, the basic premise of the inertial lift 

model is that particles are deposited onto the membrane only if the permeate 

flux exceeds the inertial lift velocity. In this case, a stagnant cake layer will form 

due to the particle deposition. As the cake layer grows, it reduces the permeate 

flux due to its resistance. The cake layer also constricts the tube or channel, 

thereby leading to increases in the shear rate and the inertial lift velocity. The 

cake continues to build up until the lift velocity, VL,  and the permeate velocity 

at the edge of the cake layer, TJ,, become equal. 

The permeate velocity for a cake of thickness 6, on the membrane is given 

by Eqs. (11) and (12), together with a mass balance on permeate as it flows 

through flat or curved cake layers: 

Jm v,= J=- 
1 + P i  

rectangular slits , (15a) 

where Jm = Ap/po& is the permeate flu in the absence of a cake layer and 

i = 6,/Ho is the dimensionless cake thickness. The inertial lift velocity is given 

by Eq. (9) but with the shear rate modified to account for the tube or channel 

being constricted due to the cake buildup. If the feed pump delivers a constant 

volumetric flowrate, Q, then it is seen from Eq. (2) that the shear rate increases 

due to a cake buildup of thickness 6, by a multiplicative factor of H t / ( H o  - be)", 

where n = 3 for a tube and n = 2 for a slit. After taking this into account, the 

inertial lift velocity is given by 

where V L , ~  is the inertial lift velocity given by Eq. (10) for a nonconstricted tube 

or channel. 
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Equations (15) and (16) may be solved simultaneously for the permeate 

flux and cake thickness by setting v, = VL at steady state. In the limit of 

p >> 1, a very thin cake layer provides the dominant resistance. The solution 

of Section 2.3 is then recovered, with the flux given by Eq. (10) and the cake 

thickness inversely proportional to the specific cake resistance: 

p>> 1 )  Jm > V L , ~  . (17) 

In the opposite limit of p << 1, the membrane provides the controlling resistance. 

The cake layer then serves to increase the inertial lift velocity by constricting the 

tube or channel, but i t  does not affect the permeate flux because of its relatively 

low resistance: 

The general solution for various values of the relative cake resistance, p, is 
shown in Figure 3 as a plot of J/Jm versus Jm/v~,,,. The steady-state flux 

increases with increasing V L , ~  (because of larger inertial lift velocities) and with 

decreasing p (because thicker cakes form when they have less resistance, and 

so the inertial lift velocities increase due to channel constriction). As before, 

the steady-state fluxes predicted by the inertial lift model are independent of 

the channel length and particle concentration. They are independent of the 

transmembrane pressure only in the limit /3 -+ 00, and become proportional 

to the transmembrne pressure in the limit p -+ 0. For finite p, the cake layer 

thickness increases with increasing J m / ~ ~ , o ,  in order to reduce the permeate flux 

and increase the inertial lift velocity until there is no net particle deposition at 

the edge of the cake. As J,/VL,~ + 00, the cake nearly fills the tube or channel; 

for flat channels the permeate flux then asymptotes to J = Jm/(l +p), whereas 

for cylindrical channels the permeate flux decreases to zero in this limit because 

the surface area for filtration approaches zero as the cake nearly fills the tube. 
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FIGURE 3 

The dimensionless permeate flux profile at steady state for inertial lift as the 
dominant back-transport mechanism. The solid lines are for rectangular filters 
and the dashed lines are for cylindrical filters. The curves from top to bottom 
represent B = 0, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10, 20, and 00. 

3.2 Shear-induced Diffusion 

The cake thickness at steady state for diffusive back transport increases with dis- 

tance from the filter entrance. This thickness is governed by the concentration- 

polarization boundary layer adjacent to the cake. At a given position E, the 

polarization layer must transport toward the filter exit all of the particles that 

are convected into the layer by the permeate flow everywhere upstream of 2. The 

corresponding increase in the cake thickness with z provides for this requirement 

in two ways. First, the increased cake resistance reduces the local permeate flw, 
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which allows the concentration polarization layer to expand by diffusion. Sec- 

ond, the increased cake thickness reduces the effective cross-sectional area of 

the channel so that the suspension velocity (assuming constant flow rate) is in- 

creased. These two effects combined lead to an increase with x in the rate at 

which rejected particles are transported downstream in the polarization bound- 

ary layer. 

The analysis presented in this section to predict the steady-state cake thick- 

ness and permeate flux profiles using the shear-induced diffusion model follows 

the integral theory first described by Romero and Davisae. Modifications are 

made in order to account for the curvature of the cake layer in cylindrical tubes 

and for the possibility of partial sticking of the particles at the cake surface. The 

steady-state integral mass balance on particles in the concentration-polarization 

layer yields”: 

i6.t6 .( 4 - d b ) &  = [ vudbdz 7 (19) 

where v, is the permeate velocity at the edge of the cake layer, 6 is the boundary 

layer thickness, 4(y) is the particle volume fraction, u(y) is the velocity in the 

down-channel (z) direction, and y is the distance measured from the membrane. 

The first term represents the convection of particles toward the filter exit by the 

crossflow (the bulk concentration is subtracted from the integral in order to 

account for the particles present even in the absence of polarization), and the 

second term represents the convection of particles into the flowing boundary 

layer by the permeate flow. This equation applies to cylindrical geometries, as 

well as to rectangular ones, provided that the boundary layer is thin compared to 

the tube radius. A simple scaling analysis indicates that the boundary thickness 

is of order D/v , ,  and this is typically small compared to H ,  for typical conditions 

encountered in practice. However, v, = J for rectangular channels, whereas 

v, = JH,/(H, - 6=) for cylindrical tubes from mass balance considerations. 

In order to evaluate the first integral in Eq. (19), expressions are needed 

for the velocity and concentration profiles in the polarization layer. As de- 
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scribed by Romero and Davis2Q, the concentration profile may be determined 

from a differential mass balance involving convection toward the membrane and 

diffusion away from the membrane. The axial velocity profile is then found by 

integrating Newton's viscosity law subject to the assumption of a concentration- 

dependent Newtonian viscosity and a constant shear stress in the concentration- 

polarization layer. Davis and Sherwood'* have shown that this approach, which 

neglects axial convection in the differential mass balance but retains it when the 

mass balance is integrated across the polarization boundary layer, is exact in 

the dilute limit and accurate to within a few percent for nondilute suspensions. 

By substituting the resulting velocity profile into Eq. (19), and then using 

the concentration profile to transform the variable of integration h m  y to 4, 
the following expmsion relating the permeate velocity to the boundary layer 

profiles results: 

where ~ ( 4 )  is the concentration-dependent viscosity of the suspension, pb = 

p ( 6 )  is the viscosity of the bulk suspension, and D(4)  is the concentration- 

dependent shear-induced diffusivity. This expression does not apply in a short 

region near the channel entrance, because axial convection there is sufficient to 

transport the polarization layer downstream without a stagnant cake forming. 

This cake-free region extends for 0 5 c 5 z,, where the critical distance is 

determined from Eq. (20) using u, = J,,, and 6, = 0: 

where the dimensionless function 4 ,  which is called the crossflow integral, is 

defined by 

1 (22) 
bu W ) W  (4 - 4 b ) W d d ,  

4 12 = (Pba/po) #,q@) 
be 
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and p(c) = p/po and b(c)  = ( H ,  - 6 , ) "D/H~D0 are dimensionless viscosity 

and diffusivity functions, respectively. The crossflow integral is directly pro- 

portional to the dimensionless excess particle flux (Q) defined previously16: 

1 2  = (pa/po)'Q, and the two are equal in the dilute limit. Numerical val- 

ues for 8 are presented by Davis and Leightonls using viscosity and diffusivity 

functions appropriate for suspensions of monodispersed rigid spheres. Do is a 

characteristic diffusivity of the particles and is chosen as Do = ibaa for shear- 

induced diffusion. Referring to Eq. (21), an effective diffusivity may be defined 

as D. = DoIi'2. This is especially convenient because the effective diffusivity 

may be determined experimentally without detailed knowledge of the particle 

size and dimensionless viscosity and diffusivity functions. It also does not re- 

quire that the wall concentration be known. Earlier crossflow microfiltration 

models have set & equal to the particle volume fraction within the cake and 

thereby imply that the particles are free to diffuse away from the cake without a 

concentration jump. Here, a jump in concentration is allowed as an approximate 

model of partially adhesive cakes for which there is an equilibrium between par- 

ticles on the stagnant cake surface and those adjacent to it within the flowing 

boundary layer. 

It proves convenient to make the governing equations dimensionless by defin- 

ing x = x/x,, 6, = v,,,/Jm, J = J/Jml and 8 = 6, /H0.  Then combining Eqs. 

(ll),  (12), and (20) yields 

Fcir 3 5 1, 8 = 0 and j = 1. Equation (23) is solved for 6(i) by substituting in 

Eq. (24), differentiating the result, and then applying standard numerical rou- 
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distance, x/x,, 

FIGURE 4 

The dimensionless cake thickness versus dimensionless distance from the filter 
entrance for shear-induced diffusion as the dominant back transport mechanism. 
The solid lines are for rectangular filters and the dashed lines are for cylindrical 
filters. 

tines for first-order nonlinear ordinary differential equations. The dimensionless 

permeate flux, j(i), is then determined from Eq. (24). 

Numerical solutions to Eqs. (23) and (24) for various @ are presented in Fig- 

ures 4 and 5.  For small @, the filter cake does not significantly reduce the flux 

and so it can become very thick and even pinch off the channel. This has been 

observed by Ofsthun= for yeast cakes in narrow hollow fibers. The steady-state 

cake thickness is reduced by shear-induced diffusion, because the back-diffusion 

of particles increases due to the increased shear rate as the cake builds up and 

partially restricts the channel. As p is increased, the flux is decreased due to the 
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filter length, L/x,, 

FIGURE 5 
The dimensionless, length-averaged permeate flux at steady state versus dimen- 
sionless filter length for shear-induced diffusion as the dominant back-transport 
mechanism. The solid lines are for rectangular filters and the dashed lines are 
for cylindrical filters. The curves represent the parameter values /3 = 0, 0.1, 0.2, 
0.5, 1.0, 2.0, 5.0, 10, 20, and 00, from top to bottom. 

increased resistance of the cake layer. The cake thickness also decreases with 

increasing p, because the reduction in flux implies that less channel constric- 

tion is required to achieve a steady-state balance of the deposition of particles 

into the boundary layer with the convection of these particles toward the filter 

emt. Good quantitative agreement with these predictions has been observed by 

Romero and Davisz6 for suspensions of latex spheres. 

The cake buildup is less for a tube than for a two-dimensional rectangular 

channel, because of the greater reduction in cross-sectional area for suspension 

flow in a tube. However, the steady-state flux is less for a tube than for a 
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rectangular channel, because of the reduction of surface area for filtration in a 

tube. The minimum flux for a finite value of @ in a tube is J = 0, whereas in a 

rectangular channel it is J = Jm/( 1 + @), corresponding to the tube or channel 

becoming nearly filled with suspension. For shear-induced diffusion, this occurs 

only in the limit x/xm + w. In contrast, a tube with only Brownian back- 

diffusion may become completely blocked off in a finite length for finite @. 

Analytical solutions to Eqs. (23) and (24) may be obtained in the limiting 

cases of membrane-dominated resistance and cake-dominated resistance. In 

particular, for 2 > 1 and membrane-dominated resistance (@ << 1): 

j = l  , 8 = 1 - 2 - * / ‘  slit , b = 1 - ( (62 + 1)/7 )-”’ tube , (25) 

indicating that the flux remains at its clean membrane value of J = J,, whereas 

the cake layer thickness builds up to fill an appreciable portion of the tube or 

channel for c >> 2,. In contrast, for 2 > 1 and cake-dominated resistance 

(p  >> 1): 

indicating that the flux is inversely proportional to the one-third power of the 

distance from the channel entrance for c >> z,, and that the cake layer remains 

thin due to its high specific resistance. 

The solution for the permeate flux, J(c), may be integrated along the length, 

L, of a filter in order to find the length-averaged permeate flux. It is this length- 

averaged flux, (J), that is shown in Figure 5. For the dual limit of p > 1 and 

L / x ,  >> 1, which implies that the resistance is dominated by a thin cake over 

most of the filter length, this yields (j) = (3/2)2/3(zm/L)1/3, or in dimensional 

form: 
1/3 

( J )  = 1.31 [x] W : I 2  . 

The function I2 depends on q&, and the concentration 

the viscosity and diffusion coefficients. For many suspensions, 

dependencies of 

these quantities 
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(except 4 b )  are not known or easily determined. Fortunately, they only appear 

as the single quantity given by Eq. (22). For the special case of constant viscosity 

and diffusivity, the integrals may be evaluated analytically: 

Not,e that 1 2  = ~5~ for dilute suspensions (db << &), and so Eq. (4) is recovered 

in this limit. For the special case of dilute suspensions of nonadhesive, monodis- 

perse rigid spheres, the numerical value16 of 1, is 1 x and Eq. (27) is then 

identical to Eq. (8). 

4 TRANSIENT MODELS FOR THICK CAKE LAYERS 

The previous sections describe models for the steady or quasi-steady permeate 

flux in crossflow microfiltration. In practice, flux decline from the initial value 

to the steady value is observed over time. Typically, there is a short-term flux 

decline, occurring over time scales of minutes or hours, due to cake buildup. 

There is also a long-term flux decline, occurring over time scales of hours or 

days, due to membrane fouling, membrane compaction, and cake compaction 

or consolidation. Gradual flux decline also occurs in batch recycle filters due 

to the gradual increase in the bulk concentration. Both short-term and long- 

term flux decline may be described by Darcy’s law (Eq. (ll)), with the cake 

and membrane resistances being time-dependent. The cake resistance increases 

as the cake thickness increases, as described by Eq. (12). Moreover, when cake 

compaction or consolidation occurs, then the specific cake resistance, &t) ,  

may also increase with time. The membrane resistance, R,,,(t), increases with 

time due to membrane fouling. Petzny and Quinn3*, de Balmann et aLS2, and 

Robertson and Z ~ d n e y ~ ~  note that the membrane permeability (the inverse of 

the specific resistance) may decrease as a result of adsorbed macromolecules 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
4
6
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



MODELS FOR CROSSFLOW MICROmLTRATION 99 

decreasing the effective membrane pore radius. Ethier and Kamm3'J6 have 

modeled this behavior for rate-limited adsorption in cylindrical pores. Fane' 

and Aimar et dm have measured the changes in membrane resistance due to 

protein adsorption and observed that it increases from an initial value to a 

final value in a decaying exponential fashion. Similar observations were made 

by Matsumoto et t ~ l 3 ~ ,  with the increase in membrane resistance attributed 

to a pore plugging mechanism. A simple phenomenological expression for this 

behavior is 

where k0 is the initial resistance of the clean membrane, is the final 

resistance of the fouled membrane, and T,,, is a membrane fouling time con- 

stant which depends on the concentration of foulant in the feed suspension for 

adsorption-limited fouling and also on the transmembrane pressure or initial 

flux for transport-limited fouling. More fundamental expressions for the time 

rate of change of the membrane resistance are expected to be developed in the 

future as research on membrane fouling due to adsorption, pore plugginggd, sur- 

face d e p o ~ i t i o n ~ ~ * ~ ~ ,  and other mechanisms proceeds. 

In the next subsection, the theory of transient flux decline due to cake 

buildup during deadend filtration is reviewed. This is followed by a shear- 

induced diffusion model to describe transient flux decline due to the buildup 

of the cake layer of rejected particles until the tangential flow of suspension 

prevents further cake growth. A key result of this model is that the initial 

transient flux decline due to cake growth in crossflow microfiltration is closely 

approximated by simple deadend filtration theory. Under conditions for which 

inertial lift is the primary mechanism for particle back-transport, a model for 

flux decline due to cake growth may be derived by generalizing the development 

of Green and Belfortg, the details of which are omitted here. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
4
6
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



100 DAVIS 

4.1 Deadend Filtration Theory for Transient 

Flux Decline 

The rate of cake growth during deadend filtration using a membrane which 

completely rejects the particles forming the cake may be determined with the 

aid of a particle mass balance at the edge of the growing cake layer: 

where q$, is the solids volume fraction in the suspension being filtered, and 4c 
is the solids volume fraction in the cake, just below its top surface. The left- 

hand-side of Eq. (30) represents the flux of particles into the surface of the 

cake, and it takes into account that this flux is due to the relative motion of the 

downward flow of suspension and the upward growth of the cake. As discussed 

by Doshi and Trettin4*, the contribution to this flux due to back-diffusion of 

colloidal and fine particles in unstirred cells is negligible. The right-hand-side 

of Eq. (30) represents the buildup of particles in the cake. Combining Eqs. (ll), 

(12), and (30) yields a first-order ordinary differential equation for the cake- 

layer thickness on a flat filter: 

This equation is subject to the initial condition, 6, = 0 at  t = 0. 

Headend batch filtration is often carried out with a constant imposed pres- 

sure drop. In this case, the permeate flux decreases with time due to cake 

buildup. Eq. (31) may then be separated and integrated to yield 

In performing the required integration, it is assumed here that R, is constant 

(no significant membrane fouling or compaction over time) and that q5c and R, 

are constant (no significant changes in cake compression over time), although 

these, assumptions may be relaxed. This quadratic equation is then solved for 

the cake thickness to yield: 
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By combining this with Eq. (34), the flux expression is 

101 

(33) 

where the initial flux is given by J,  = Ap/poR,,,. The permeate flux starts at its 

initial value for a clean membrane and then decreases linearly with time for short 

times due to cake buildup. As the flux declines, the rate of cake buildup also 

declines. For long times;the flux is inversely proportional to the squareroot of 

time. 

4.2 Shear-induced Diffusion Model for Transient Flux 

Decline 

During crossflow microfiltration, particles will deposit on the membrane surface 

to form a cake layer, except under extreme conditions (high shear rate, low 

transmembrane pressure, low feed concentration) for which the particles are 

convected toward the filter exit by the tangential flow of retentate as rapidly as 

they are convected toward the membrane surface by the perpendicular flow of 

permeate. The permeate flux declines according to Darcy’s law (Eqs. (11) and 

(12)) as the cake builds up, and the primary role of the high shear provided 

by the tangential flow is to arrest the cake buildup. As in the steady-state 

case, the cake thickness permeate flux may be related to the properties of the 

concentration polarization boundary layer. The differential mass balances for 

suspension and particles in the boundary layer are, respectively: 

where v is the velocity in the transverse (y) direction. The boundary conditions 

at the outer and inner edges of the boundary layer are 
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where += = 1 - cC is the mass concentration of solids in the cake. Instead of 

solving these equations pointwise, which would be difficult both to perform and 

to apply in practice, Eq. (36) may be integrated across the boundary layer, 

yielding42: 

The first term in Eq. (38) represents particle accumulation in the boundary layer, 

the second represents particle accumulation in the cake, the third represents 

particle convection in the boundary layer by the tangential flow, and the right- 

hand-side is the convection of particles into the boundary layer due to the 

permeate flow. After steady-state is reached, the first two terms are zero, and 

what remains is simply the x-derivative of Eq. (19). 

The initial conditions for Eqs. (36) and (38) are that q5 = and 6, = 0 

at f = 0. Once filtration starts, the particle concentration at the edge of the 

membrane increases rapidly until it reaches 4 = 4, for all 2: 2 x, (this typically 

requires a few seconds). A stagnant cake layer then forms and begins to build up 

on the membrane surface, because the convection of particles into the boundary 

layer by the permeate flow (the fourth term in Eq. (38)) exceeds the convection 

of particles in the boundary layer toward the filter exit by the tangential flow 

(the third term in Eq. (38)). The capacity of the thin boundary layer for particle 

accumulation (the first term in Eq. (38)) is typically small. The cake continues 

to build up until its resistance reduces the permeate flux and its finite thickness 

constricts the channel, thereby increasing the tangential convection, by sufficient 

amounts so that the last two terms in Eq. (38) become in balance. 

As shown by Romero and Davis4', the variable of integration may be trans- 

formed from y to +, so that Eq. (38) becomes 
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where the double integral 12(&, 4,) is given by Eq. (22), and the single integral 

Id&,  +w) is given by 

For constant properties (B = p = I), the latter integral is simply I1 = 4, - 

4 b  - hln(4wfh)-  

It proves convenient to nondimensionalize Eq. (39) by defining 3i: = x/z,, 

i = (t - &,)/To +, = v,/Jm0 and d = 6,/Ho, where Jm I API~&, ,~  is the 

initial flux and t, = DoIl/J& is the time required for the stagnant cake to 

first form and is typically negligible4'. The characteristic time for cake growth, 

re, is chosen to be the time required for the cake buildup to iill the entire 

channel, if the flux remained at its initial value and back-dihion was negligible: 

T, 3 (++ - h)H0/(hJmo). In dimensionless form, Eq. (39) then becomes 

and Eq. (24) is modified to account for internal membrane fouling: 

slit , (424 
1 j=GW=--- 

a+@ 

tube , 1 j = (1 - Z)6, = 
a + p h(1- 8 ) - 1  

where j = J /  Jm0, n = 2 for rectangular geometries, n = 3 for cylindrical geome- 

tries, a = R, Jk0, p = Ho&/12-, and R- is the initial membrane resistance 

at t̂  = 0. The Piclet number is defined here as Pe  = JmHo(4+ - h ) / D o I 1  and 

is typically much greater than unity, indicating that particle accumulation in 

the thin flowing polarization layer is small relative to particle accumulation in 

the stagnant cake layer. Equations (41) and (42) are solved exactly using the 

method of chara~terist ics~~, as detailed in the Appendix. 
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The solution strategy outlined in the Appendix may be extended to other 

cases, including more general situations where R, and Re are allowed to de- 

pend not only on time but also on position and/or intrinsic parameters such as 

concentration and flux. However, the method of characteristics involves compli- 

cated numerical solutions which are unlikely to be applied in practice. Instead, 

an approximate solution which has its origins in the nature of the character- 

istics solution is proposed. In particular, the cake buildup and flux decline in 

the developing region are independent of position and of the imposed crossflow, 

provided that P e  >> 1 (as is typical). The cake buildup is then governed by 

deadend filtration theory, which is represented by Eq. (38) with only the middle 

term retained on its left-hand-side. If we further consider only the typical case 

of slow membrane fouling and cake compaction relative to the initial rate of cake 

buildup, then we can set a = 1 and p = constant in this equation. The resulting 

solution for rectangular channels and cylindrical tubes are, respectively, 

h ( t )  = ((1 + 2pi)l’Z - 1) / p  slits , (43a) 

= t̂  tubes . (43b) 1 (1 - 8 ) Z  (1 (1 - -%)2 (1 - 8 ) Z  + p  4 - 4 - p  
2 2 2 

Equation (43a) is the dimensionless version of Eq. (33) from deadend filtration 

theory. This rectangular solution also applies for cylindrical geometries for short 

times, when 8 << 1. 

For the typical condition of a stagnant cake layer forming over most of the 

filter length (Liz,, >> l), then the developing solution applies over most of the 

filter length for short times. The length-averaged, transient permeate flux for 

short times is then approximated by substituting Eq. (43) into Eq. (42) with 

a z z  1: 

(S) = 1/ (1 + 2pi)’’2 , (44) 

which is the dimensionless version of Eq. (34) from deadend filtration theory. 

The transient flux decline due to rapid cake buildup continues until the devel- 

oprd region is reached over the entire filter length. After that, a pseudo-steady 
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state is reached in which flux decline may continue due to gradual membrane 

fouling and cake compaction. This may be predicted by using the steady-state 

theory in a quasi-steady fashion, treating J,,, Ap/p,Rm and P = %Ha/&, 
as slowly-varying parameters. A recommended approximate model is even 

simpler-use Eq. (44) to describe the entire transient flux decline, with J,, 

and p based on R, = &,,, and then use the solution to Eqs. (23) and (24) 

shown in Figures 4 and 5 (or simply Eq. (27), if p >> 1) to describe the steady- 

state flux, with J, and /3 based on R, = &,!. The transient solution is applied 

until the time at which the flux reaches its steady value. A comparison of this 

approximate model (dashed lines) with the complete solution (solid lines) using 

the method of characteristics is shown for a wide range of parameter values in 

Figures 6-10. The agreement is sufficiently good for the approximate model to 

be used in practice. In particular, Figure 6 shows that the agreement is excel- 

lent for rectangular filters when there is no internal membrane fouling (a = 1) 

or cake compaction (p  = constant), and when the concentration polarization 

boundary layer is very thin (Pe -P oo), for all times and for arbitrary values of 

the dimensionless cake resistance. 

When internal membrane fouling or cake compaction occurs, then there is a 

period of rapid flux decline due primarily to cake buildup, followed by a period 

of gradual flux decline due to internal membrane fouling or cake compaction, 

as shown in Figures 7 and 8. For the typical case of a small characteristic cake 

growth time relative to  the characteristic membrane fouling time, the rapid flux 

decline closely follows that predicted by the approximate, deadend filtration 

theory. The subsequent gradual flux decline is not predicted by the approxi- 

mate theory, which simply sets the flux equal to its steady-state value for the 

membrane and cake with their final resistances. When the gradual flux decline 

is severe, this approximation may be improved by applying the steady-state 

theory in a quasi-steady fashion, using slowly varying membrane and specific 

cake resistances. 
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FIGURE 6 

The dimensionless length-averaged permeate flux decline for a rectangular filter 
(TI = 2) having a nonfouling membrane (a = 1) with shear-induced diffusion, 
L / c ,  = lo4, P e  -+ 00, and various dimensionless cake resistances. The solid 
lines are from the exact solution of Eq. (41), whereas the dashed lines are from 
the approximate solution given by Eq. (43a), together with Eq. (42). 

For cylindrical tubes with nonfouling membranes, the predicted flux decline 

from the complete theory for P e  -+ 00 closely follows that from the approximate 

theory (Eq. (44)) for short times, as demonstrated in Figure 9. For longer times, 

however, the flux decline from the complete model for P e  -+ 00 is more rapid 

than predicted by the approximate model. This occurs when the cake fills an 

appreciable fraction of the tube cross-section, so that the curvature correction 

to Darcy’s law becomes important. With this correction, the flux from dwrlend 

filtration theory is given by substituting Eq. (43b) into Eq. (42b). The ult 

is the dotted line in Figure 9, and the agreement with the complete theorv ;r, 
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1 .o 

0.0 

time, t 

FIGURE 7 

The dimensionless length-averaged permeate flux decline for a rectangular filter 
(n = 2) with shear-induced diffusion, L l x ,  = lo', p = 2,7;, = 2, Pe -+ oo, and 
various dimensionless final membrane resistances. The solid lines are from the 
exact solution of Eq. (41), whereas the dashed lines are from the approximate 
solution given by Eq. (43a), together with Eq. (42). Note that the transient 
portion of the approximate solution does not depend on the final membrane 
resistance. 

excellent for Pe + 00 up until the time that steady state is reached. Figure 9 

also shows how the solution depends on finite values of the P6det number. 

When the PCclet number is not large, then significant particle accumulation 

occurs in the flowing boundary layer, and the cake-layer growth and resulting 

flux decline occur more slowly. In practice, Pe 2 10' for typical parameter 

values (.Im = cm/s, He = 0.1 cm, Do = lo-' cm2/s, q& = 0.6, 6 = 0.1, 

1, = 0.5), and so this effect is usually small. The good agreement between 
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FIGURE 8 

The dimensionless length-averaged permeate flux decline for a rectangular filter 
(n  = 2) having a fouling membrane (a, = 2) with shear-induced diffusion, 
L j x ,  = lo4, /3 = 2, P e  4 00, and various fouling time constants. The solid 
lines are from the exact solution of Eq. (41)’ whereas the dashed lines are from 
the approximate solution given by Eq. (43a), together with Eq. (42). Note that 
the approximation solution does not depend on the fouling time constant. 

the complete and approximate models for Pe = 20 represents a tradeoff of two 

factors: the accumulation of particles in the boundary layer rather than the cake 

layer, which increases the flux, and the curvature effect in Darcy’s law, which 

decreases the flux. 

Finally, Figure 10 shows the full and approximate solutions for parameter 

values which are typical of suspensions of micron-sized particles in cylindrical 

tubes with moderate fouling. The transient flux decline from the complete 

theory is in close agreement with the approximate, deadend filtration model 
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FIGURE 9 

The dimensionless length-averaged permeate flux decline for a cylindrical filter 
(n = 3) having a nonfouling membrane (a = 1) with shear-induced diffusion, 
L / z ,  = lo', /3 = 2, and various PCdet numbers. The solid lines are from the 
exact solution of Eq. (41), whereas the dashed and dotted lines are from the 
approximate solution given by Eqs. (43a) and (43b), respectively, together with 
Eq. (42). Note that the approximate solution does not depend on the PCclet 
number. 

both with (dotted line) and without (dashed line) the curvature correction, 

until the flux decreases to less than onehalf its initial value. In practice, the 

dimensionless filter length, L / t , ,  may span a wide range of values, but it is 

typically several orders-of-magnitude larger than unity. 

5 CONCLUDING REMARKS 

Quasi-steady and transient models for crossflow microfiltration have been devel- 

oped for typical conditions where both cake resistance and membrane resistance 
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time, F 
FIGURE 10 

The dimensionless length-averaged permeate flux decline for a cylindrical filter 
(n = 3) having a fouling membrane (af = 1.5 and f,,, = 2) with shear-induced 
diffusion, P e  = lo3, j3 = 10, and various dimensionless filter lengths. The solid 
lines are from the exact solution of Eq. (41), whereas the dashed and dotted lines 
are from the approximate solution given by Eqs. (43a) and (43b), respectively, 
together with Eq. (42). Note that the approximate solution does not depend on 
the filter length. 

contribute to the permeate flux decline. Initially, the rate at which rejected 

particles are carried toward the membrane by the permeate flow exceeds the 

rate at  which the tangential flow is able to carry them downstream, and so a 

cake layer builds up on the membrane surface and a concentration polarization 

layer forms adjacent to it. The cake layer reduces the permeate flux and con- 

stricts the channel so that the tangential shear exerted by the bulk suspension 

increases. This continues until a steady or quasi-steady state is reached in which 

the rate at which particles are carried into the polarization layer by the permeate 
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flow is balanced by the rate at which particles are transported away from the 

cake and are convected downstream by the tangential flow. The back-transport 

mechanisms considered in this review include Brownian di&sion (submicron 

particles and low shear rates), inertial lift (supramicron particles and high shear 

rates), or shear-induced diffusion (intermediate-sized particles and moderate 

shear rates). In general, cake layers composed of the submicron particles as- 

sociated with Brownian motion have very high specific resistances and 80 they 

remain thin relative to the channel half-height or tube radius. This is also true 

of highly compressible particles. Under these conditions, the steady or quasi- 

steady state is reached in a very short time, and the resulting models for thin 

cake layers are considerably more simple than thoae for thick cake layers. 

If the cake layer is partially adhesive, then there will be a concentration jump 

at its surface. If the adhesion forces are sufficiently strong, then the particles 

will stick upon arriving at the cake surface, and there will be no back-diffusion 

of particlea away from the membrane. In this case, a nondifisive mechanism of 

particle back-transport is required if cake growth is to be arrested by the shear 

action of the tangential flow through the tube or channel. One possibility is 

inertial lift, which becomes important at high shear rates and for particles larger 

than about ten microns. Another possibility involves particle surface transport, 

in which the shear exerted by the tangential flow exerts a torque about a contact 

point on a particle resting on the surface of the cakea. If this torque is sufficient 

to overcome the torques exerted by other contact points, the permeate flow, and 

any adheaive forces, then the particle would be swept along the cake surface to 

the filter exit. This would give rise to individual particles rolling along, and 

perhaps captured by, the surface of the cake. A similar picture would also apply 

for conditions where the concentration polarization layer thickness, 6 w D/uw, 

is no larger than the diameter of individual particles. Various models which 

consider the interaction and adhesion of individual particles near the membrane 

or cake surface have been proposed recently and are able to explain observed 

data trends when diffusive mechanisms do not apply4M6. 
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The rapid flux decline due to cake buildup is followed by a more gradual 

flux decline due to membrane fouling and/or cake consolidation. The complete 

shear-induced diffusion model of these effects requires a numerical solution by 

the method of characteristics. However, it is shown that a simple yet reason- 

able approximation is to describe the rapid flux decline due to  cake buildup 

by deadend filtration theory-independent of the imposed tangential flow-up 

until the time at which the predicted steady or quasi-steady flux is reached. 

A similar conclusion is expected for other back-transport or surface-transport 

mechanisms occurring as a result of the tangential flow. 

The models include physical parameters-such as the membrane resistance 

(I?,,,,), the specific cake resistance (&), and the crossflow double integral over 

the concentration-dependence of viscosity and diffusivity (Iz)-which must be 

determined empirically for particular membranes and suspensions employed in 

practice. Fortunately, these parameters may be determined from relatively sim- 

ple experiments. In particular, the membrane resistance may be found from 

the pure solvent flux. When membrane fouling is severe, the time-dependent 

membrane resistance may be determined by removing the cake (mechanically or 

by backflushing) and then measuring the pure-solvent flux at different filtration 

times. 

The specific cake resistance may be determined from fitting the initial tran- 

sient flux data from a crossflow microfiltration experiment to the deadend fil- 

tration theory given by Eq. (34). In particular, the deadend filtration equation 

map be rearranged in the form: 

whrre J, = Ap/poR,,, is the initial flux. Thus, a plot of J:/( J)* - 1 is expected 

to yield a straight line through the time origin with a slope proportional to 

the specific cake resistance, Rc. Since data for the permeate flux generally 

require that permeate volume versus time data be numerically differentiated, it 
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is usually more convenient to use the integrated version of the deadend filtration 

equation: 

where V ( t )  is the permeate volume collected in time t and A is the membrane 

area over which the filtration takes place. Thus, a plot of At/V versus VIA 

is expected to yield a straight line with slope proportional to & and intercept 

proportional to R, (it is still recommended that R, be determined from pure 

solvent flux measurements, since the intercept value is very sensitive to uncer- 

tainties in the time origin). 

The crossflow double integral may be determined from measuring the steady 

or quasi-steady permeate flux for a given set of operating conditions. In particu- 

lar, once the length-averaged permeate flux is known, then Figure 5 (or Eq. (27) 

for cake-dominated resistance) may be used to match theory and experiment to 

determine 1 2  as the only unknown. 

Finally, the models described in this review do not explicitly include multiple 

mechanisms of particle transport away from the cake layer acting simultaneously. 

A possible improvement to the shear-induced diffusion model would be to in- 

clude inertial lift by replacing v, on the right-hand-side of Eqs. (20) and (39) 

with v, - VL. This possibility warrants further study and testing with suprami- 

cron particles and high shear rates, for which inertial lift is most important. 

In particular, as the cake layer builds up, the resulting channel constriction 

increases the effective shear rate at the cake surface. This, in turn, increases 

both shear-induced diffusion and inertial lift, with the effect on the latter being 

greater due to the quadratic dependence indicated by Eq. (10). 
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APPENDIX 

The integral model from Section 4.2 for the transient behavior of crossflow 

microfiltration has been solved using the method of characteristics by Romero 

and Davis4' for the special case of constant membrane resistance. Here, this 

solution is outlined for the more general case, and illustrative results are pre- 

sented. 

Equations (42) and (43) may be conveniently recast in the following general 

form: 

(47) 
ad ad 

where a and p may increase with time due to membrane fouling and cake com- 

paction or consolidation, respectively, and may also depend on operating condi- 

tions such as concentration and transmembrane pressure. 

The functions f, g,  and h are given by 

slit (n = 2) , (48a) 

tube (n = 3) , (48b) 
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slit ( n =  2) , (498) 

2B(a + Pi)  + 3n(a + Pi)' h =  
(1 - b)Jn (1 - Q*+l 

2/3(atBln(1-8)-1) 
(1 - 8)- h =  

slit (n = 2) , (50s) 

tube ( n = 3 )  , (50b) 

where u and B are allowed to vary with both time and position for the general 

case. 

The initial and boundary conditions for Eq. (47) are: 

% = o  , t 5 0  for 220 , (5% 

8 = 0 ,  $51 for i 2 0  . (51b) 

These equations are solved using the method of characteristics. In the developing 

region, the characteristic lines are governed by 

d i J d t = h / g  , S = s 0  at i = O  , 

and the solution along these characteristics is governed by 

& / d i = f / g  , 8 = 0  at i=o 

In the developed region, these equations are replaced by 

. , *  
a $ / d $ = g J h  , t = t o  at 12 = 1 , 

&Id&= f J h  , i = O  at L = l  . 

(53) 

(54) 

(55) 
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The developing and developed regions are separated by the primary character- 

istic, having &, = 1 and t̂ , = 0. Once these equations are solved, the solution in 

real time and space, &($, t^), is obtained from the solution along the character- 

istics, 8(E, &) or &(5, lo), by using the characteristic lines, 2(t^, 5,) or t!(&, &,), 

to relate real time and space to characteristic time and space in the developing 

and developed regions, respectively. 

The solution by the method of characteristics is illustrated in Figures 11-16. 

For these figures, the exponential decay function given by Eq. (29) to describe 

the increase in membrane resistance due to fouling is used. In dimensionless 

form, this yields 

a(t)  = 1 + (at - 1)(1- e+'**) , (56) 

where af R,,,f/R,,,,, with R,,,f being the final membrane resistance, and 

im = rm/rC, with rm being the characteristic membrane fouling time. Also, a 

constant value of p = 5.0 was used, the Piclet number was set at infinity, and a 

cylindrical tube (TI. = 3) with shear-induced diffusion was analyzed (but without 

the correction for curvation in Darcy's law). A second-order Euler method with 

logarithmic spatial steps and linear time steps was used to numerically solve 

the nonlinear, first-order ordinary differential equations. The resulting map of 

characteristic lines is shown in Figure 11. The dotted curves are the character- 

istics determined from Eq. (52) for the developing region, whereas the dashed 

curves are the characteristics determined from Eq. (54) for the developed region. 

The solid curve is the primary characteristic. Figure 12 shows the dimension- 

less cake thickness and permeate flux along the developing characteristics. Note 

that the solution along all characteristics collapse onto a single curve, because 

the functions f and g required in Eq. (53) depend explicitly on 8 and t̂ , but not 

5. This has the important consequence that cake buildup and flux decline in 

the developing region depend on time but not position in the filter. Figure 13 

shows the dimensionless cake thickness and permeate flux along the developed 

characteristics. In this case, the solution differs along the different characteristic 
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FIGURE 11 

Characteristic map for a cylindrical tube (n = 3) with shear-induced diffusion, 
Pe + 00, p = 5 ,  uf = 5, and rc/rm = 1. The solid curve is the primary char- 
acteristic, the dotted curves are the developing characteristics, and the dashed 
curves are the developed characteristics. 
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FIGURE 12 

Dimensionless cake thickness (solid line) and permeate flux (dashed line) along 
developing characteristics for the conditions of Figure 11. 
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FIGURE 13 

Dimensionless cake thickness (solid lines) and permeate flux (dashed lines) along 
developed characteristics for the conditions of Figure 11. 
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FIGURE 14 

Dimensionless cake thickness versus distance for various times and the conditions 
of Figure 11. 
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lines, because membrane fouling causes the functions f and h appearing in Eq. 

(55) to depend explicitly on i. 
Using the characteristic solution, Figures 14 and 15 were constructed to show 

the solution in real time and space. Note from Figure 14 that the cake thickness 

at a given time increases monotonically with distance in the developed region 

near the filter entrance, but that it is independent of position in the developing 

region further down the channel. Moreover, the cake thickness increases with 

time, as expected, in the developing portion of the filter, whereas it actually 

decreases with time in the developed portion of the filter. This surprising feature 

is shown more clearly in Figure 15, where the cake is seen to build up with time 

in the developing region, independent of position, and then to erode with time 

in the developed region. The physical explanation for this is that the rate at 

which particles are carried into the boundary layer by the permeate flow in the 
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FIGURE 15 

Dimensionless cake thickness versus time for various distances and the conditions 
of Figure 11. 
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FIGURE 16 

The dimensionless length-averaged permeate versus time for filters of different 
lengths and the conditions of Figure 11. 

developing region exceeds the ability of the particles to diffuse away from the 

cake and be convected downstream by the tangential flow. As a result, the 

cake thickness increases with time in the developing region, thereby reducing 

the permeate flux and increasing the tangential shear rate, until a balance is 

achieved for particle flux toward and away from the cake layer. After this time, 

the developed solution applies. However, the permeate flux continues to decline 

due to internal membrane fouling. This reduces the rate at which particles 

are convected toward the cake by the permeate flow, below the rate at  which 

they diffuse away from the cake and are convected downstream, and so the cake 

erodes. Such erosion has been observed by Ofsthun30 using freeze-substitution 

methods for microfiltration of yeast and protein mixtures in hollow fibers. Of 

course, for particles which are adhesive, so that cake buildup is irreversible, the 

cake thickness will remain constant with time in the developed portion, and the 

permeate flux from then on will be given by Eq. (42) with $ fixed but with a 
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(and p )  changing with time due to membrane fouling (and cake compaction). 

Finally, the length-averaged permeate flux decline is shown in Figure 16 for 

different filter lengths. Note that the initial flux decline is independent of filter 

length, except for very short filters. 

NOMENCLATURE 

a 

b 

D 

DB 

DO 

D, 

D 

f 
9 

h 

H 

I1 

12  

J 

(J) 

Jm 

j 

k 

K 
L 
n 

particle radius, pm 

dimensionless function in Eq. (9) 

diffusion coefficient, cm2/s 

Brownian diffusion coefficient, given by Eq. (3), cma/s 

characteristic shear-induced diffusion coefficient, azjo, cm2/s 

shear-induced diffusion coefficient, approximated by Eq. (5), 

cm2/s 

dimensionless diffusion coefficient, (H, - &)"D/ Ht Do 
dimensionless function defined by Eq. (48) 

dimensionless function defined by Eq. (49) 

dimensionless function defined by Eq. (50) 

channel half-height or tube radius, cm 

dimensionless single crossflow integral defined by Eq. (40) 

dimensionless double crossflow integral defined by Eq. (22) 

permeate flux, cm/s 

length-averaged permeate flux, cm/s 

permeate flux for membrane resistance only, Ap/poR,,,, cm/s 

dimensionless permeate flux, J/ Jm 
Boltzmann's constant, 1.38 x lo-'' g-cm2/sz-"K 

dimensionless constant in Eq. (14) 

fdter length, cm 

parameter with value 2 (rectangular slit) or 3 (cylindrical tube) 
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transmembrane pressure drop, g/cm-s2 

dimensionless Pkclet number, J,,H,(~!J~ - 4b)/DoIl 

feed flow rate, cm3/s 

dimensionless excess particle flux defined following Eq. (22) 

cake resistance, cm-' 

specific cake resistance per unit height, cm-' 

specific cake resistance per unit mass per unit area, cm/g 

membrane resistance, cm-l 

solids surface area per volume of solids, cm-l 

time, s 

time for cake layer to first form, DoIl/J~o, s 

dimensionless time, ( t  - t m ) / T c  

absolute temperature, OK 

axial velocity component, cm/s 

transverse velocity component, cm/s 

permeate velocity at edge of cake, cm/s 

dimensionless permeate velocity, v,/ J,, 

inertial lift velocity, defined by Eq. (16), cm/s 

inertial lift velocity in absence of cake layer, defined by Eq. 

(91, cm/s 

width of rectangular filter, cm 

axial distance from filter entrance, cm 

position where cake first forms, defined by Eq. (21), cm 

dimensionless distance, clam 
transverse distance from membrane surface, cm 

Greek symbols 

a dimensionless membrane resistance, &/Lo 
P 
6 

dimensionless cake resistance, RcH,/ R, 

concentration polarization boundary layer thickness, cm 
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6, cake layer thickness, cm 

b 
E void fraction 

-70 

dimensionless cake layer thickness, 6JH0 

shear rate at membrane surface, given by Eq. (2), 8-I 

suspension viscosity, g/cm-s 

pure fluid viscosity, g/cm-s 

dimensionless suspension viscosity, p/po 

particle volume traction, 1 - E 

pure fluid density, g/cm3 

solid particle density, g/cm3 

characteristic time for cake buildup, (n - &)Ho/(&Tw) 

characteristic time for membrane fouling, defined by Eq. (29), s 

dimensionless membrane fouling time, rrn/r, 

Subscripts 

b bulk suspension 

C cake layer 

f final conditions 

m membrane 

0 

W 

initid conditions in absence of cake layer, or pure fluid values 

edge of boundary layer, just above cake layer 
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